Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering
Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt...
Ausführliche Beschreibung
Autor*in: |
Liu, Jianglong [verfasserIn] Li, Fengxian [verfasserIn] Yi, Jianhong [verfasserIn] Liu, Yichun [verfasserIn] Eckert, Jürgen [verfasserIn] Zuo, Quanshan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials science and engineering / A - Amsterdam : Elsevier, 1988, 866 |
---|---|
Übergeordnetes Werk: |
volume:866 |
DOI / URN: |
10.1016/j.msea.2023.144648 |
---|
Katalog-ID: |
ELV009210636 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009210636 | ||
003 | DE-627 | ||
005 | 20230524141301.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.msea.2023.144648 |2 doi | |
035 | |a (DE-627)ELV009210636 | ||
035 | |a (ELSEVIER)S0921-5093(23)00072-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 530 |q DE-600 |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Liu, Jianglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. | ||
650 | 4 | |a Gradient materials | |
650 | 4 | |a Spark plasma sintering | |
650 | 4 | |a Fe–Cr–Ni alloy | |
650 | 4 | |a Mechanical properties | |
700 | 1 | |a Li, Fengxian |e verfasserin |4 aut | |
700 | 1 | |a Yi, Jianhong |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yichun |e verfasserin |4 aut | |
700 | 1 | |a Eckert, Jürgen |e verfasserin |4 aut | |
700 | 1 | |a Zuo, Quanshan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials science and engineering / A |d Amsterdam : Elsevier, 1988 |g 866 |h Online-Ressource |w (DE-627)320500497 |w (DE-600)2012154-4 |w (DE-576)095299947 |x 1873-4936 |7 nnns |
773 | 1 | 8 | |g volume:866 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |
951 | |a AR | ||
952 | |d 866 |
author_variant |
j l jl f l fl j y jy y l yl j e je q z qz |
---|---|
matchkey_str |
article:18734936:2023----::irsrcuevltoadehnclrprisfucinlyrddecxilosar |
hierarchy_sort_str |
2023 |
bklnumber |
51.00 |
publishDate |
2023 |
allfields |
10.1016/j.msea.2023.144648 doi (DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 DE-627 ger DE-627 rda eng 600 670 530 DE-600 51.00 bkl Liu, Jianglong verfasserin aut Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties Li, Fengxian verfasserin aut Yi, Jianhong verfasserin aut Liu, Yichun verfasserin aut Eckert, Jürgen verfasserin aut Zuo, Quanshan verfasserin aut Enthalten in Materials science and engineering / A Amsterdam : Elsevier, 1988 866 Online-Ressource (DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 1873-4936 nnns volume:866 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines AR 866 |
spelling |
10.1016/j.msea.2023.144648 doi (DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 DE-627 ger DE-627 rda eng 600 670 530 DE-600 51.00 bkl Liu, Jianglong verfasserin aut Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties Li, Fengxian verfasserin aut Yi, Jianhong verfasserin aut Liu, Yichun verfasserin aut Eckert, Jürgen verfasserin aut Zuo, Quanshan verfasserin aut Enthalten in Materials science and engineering / A Amsterdam : Elsevier, 1988 866 Online-Ressource (DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 1873-4936 nnns volume:866 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines AR 866 |
allfields_unstemmed |
10.1016/j.msea.2023.144648 doi (DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 DE-627 ger DE-627 rda eng 600 670 530 DE-600 51.00 bkl Liu, Jianglong verfasserin aut Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties Li, Fengxian verfasserin aut Yi, Jianhong verfasserin aut Liu, Yichun verfasserin aut Eckert, Jürgen verfasserin aut Zuo, Quanshan verfasserin aut Enthalten in Materials science and engineering / A Amsterdam : Elsevier, 1988 866 Online-Ressource (DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 1873-4936 nnns volume:866 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines AR 866 |
allfieldsGer |
10.1016/j.msea.2023.144648 doi (DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 DE-627 ger DE-627 rda eng 600 670 530 DE-600 51.00 bkl Liu, Jianglong verfasserin aut Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties Li, Fengxian verfasserin aut Yi, Jianhong verfasserin aut Liu, Yichun verfasserin aut Eckert, Jürgen verfasserin aut Zuo, Quanshan verfasserin aut Enthalten in Materials science and engineering / A Amsterdam : Elsevier, 1988 866 Online-Ressource (DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 1873-4936 nnns volume:866 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines AR 866 |
allfieldsSound |
10.1016/j.msea.2023.144648 doi (DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 DE-627 ger DE-627 rda eng 600 670 530 DE-600 51.00 bkl Liu, Jianglong verfasserin aut Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties Li, Fengxian verfasserin aut Yi, Jianhong verfasserin aut Liu, Yichun verfasserin aut Eckert, Jürgen verfasserin aut Zuo, Quanshan verfasserin aut Enthalten in Materials science and engineering / A Amsterdam : Elsevier, 1988 866 Online-Ressource (DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 1873-4936 nnns volume:866 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines AR 866 |
language |
English |
source |
Enthalten in Materials science and engineering / A 866 volume:866 |
sourceStr |
Enthalten in Materials science and engineering / A 866 volume:866 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Materials science and engineering / A |
authorswithroles_txt_mv |
Liu, Jianglong @@aut@@ Li, Fengxian @@aut@@ Yi, Jianhong @@aut@@ Liu, Yichun @@aut@@ Eckert, Jürgen @@aut@@ Zuo, Quanshan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500497 |
dewey-sort |
3600 |
id |
ELV009210636 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009210636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2023.144648</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009210636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(23)00072-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark plasma sintering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe–Cr–Ni alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fengxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Jianhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eckert, Jürgen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo, Quanshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials science and engineering / A</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">866</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500497</subfield><subfield code="w">(DE-600)2012154-4</subfield><subfield code="w">(DE-576)095299947</subfield><subfield code="x">1873-4936</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:866</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">866</subfield></datafield></record></collection>
|
author |
Liu, Jianglong |
spellingShingle |
Liu, Jianglong ddc 600 bkl 51.00 misc Gradient materials misc Spark plasma sintering misc Fe–Cr–Ni alloy misc Mechanical properties Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
authorStr |
Liu, Jianglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500497 |
format |
electronic Article |
dewey-ones |
600 - Technology 670 - Manufacturing 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4936 |
topic_title |
600 670 530 DE-600 51.00 bkl Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering Gradient materials Spark plasma sintering Fe–Cr–Ni alloy Mechanical properties |
topic |
ddc 600 bkl 51.00 misc Gradient materials misc Spark plasma sintering misc Fe–Cr–Ni alloy misc Mechanical properties |
topic_unstemmed |
ddc 600 bkl 51.00 misc Gradient materials misc Spark plasma sintering misc Fe–Cr–Ni alloy misc Mechanical properties |
topic_browse |
ddc 600 bkl 51.00 misc Gradient materials misc Spark plasma sintering misc Fe–Cr–Ni alloy misc Mechanical properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials science and engineering / A |
hierarchy_parent_id |
320500497 |
dewey-tens |
600 - Technology 670 - Manufacturing 530 - Physics |
hierarchy_top_title |
Materials science and engineering / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500497 (DE-600)2012154-4 (DE-576)095299947 |
title |
Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
ctrlnum |
(DE-627)ELV009210636 (ELSEVIER)S0921-5093(23)00072-2 |
title_full |
Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
author_sort |
Liu, Jianglong |
journal |
Materials science and engineering / A |
journalStr |
Materials science and engineering / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Jianglong Li, Fengxian Yi, Jianhong Liu, Yichun Eckert, Jürgen Zuo, Quanshan |
container_volume |
866 |
class |
600 670 530 DE-600 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Jianglong |
doi_str_mv |
10.1016/j.msea.2023.144648 |
dewey-full |
600 670 530 |
author2-role |
verfasserin |
title_sort |
microstructure evolution and mechanical properties of functionally graded fe–8cr-xni alloys fabricated by spark plasma sintering |
title_auth |
Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
abstract |
Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. |
abstractGer |
Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. |
abstract_unstemmed |
Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering |
remote_bool |
true |
author2 |
Li, Fengxian Yi, Jianhong Liu, Yichun Eckert, Jürgen Zuo, Quanshan |
author2Str |
Li, Fengxian Yi, Jianhong Liu, Yichun Eckert, Jürgen Zuo, Quanshan |
ppnlink |
320500497 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.msea.2023.144648 |
up_date |
2024-07-06T22:22:50.657Z |
_version_ |
1803870085483331584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009210636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2023.144648</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009210636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(23)00072-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure evolution and mechanical properties of functionally graded Fe–8Cr-xNi alloys fabricated by spark plasma sintering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Novel Fe–8Cr-xNi (x ε 0–9.0 wt%) functionally graded materials (FGMs) with strength gradient characteristics of ductile core and strength surface were fabricated by spark plasma sintering (SPS). Microstructure evolution and strength-toughness matching mechanism of the graded Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys was investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (HR-TEM) reveal two representative areas in the microstructures evolve, i.e., an α-Fe, Ni and an α-Cr enriched white region and a remaining γ-Fe, δ-Fe and Ni enriched black region. The strength-toughness matching mechanism of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloy was that the strength of materials increased due to the formation and remain of austenitic FCC γ-Fe phase prometed by increasing Ni content, and the metallurgical bond formed among the particles. The Fe–8Cr-9.0Ni gradient layer on the surface of the SPSed gradient sample shown a highest yield strength of 150 ± 24.1 MPa and a high wear resistance of the gradient sample, and the Fe–8Cr-6.7Ni gradient layer on the middle of the sampe shown a particularly excellent ductility of 15 ± 2.1% and played a role in alleviating crack. The compressive strength of the Fe–8Cr-xNi (x ε 0–9.0 wt%) -C2 FGM alloys reaches up 3385 ± 6 MPa, and the microhardness can reach a gradient distribution of 230 ± 2, 345 ± 2 and 392 ± 1 HV from the bottom layer to the upper layer. This work provides a reliable theoretical and experimental basis for the design and application of composition gradient Fe–8Cr-xNi (x ε 0–9.0 wt%) alloys with ductile core and high strength and wear resistance surface synthesized by SPS technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark plasma sintering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe–Cr–Ni alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fengxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Jianhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eckert, Jürgen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo, Quanshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials science and engineering / A</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">866</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500497</subfield><subfield code="w">(DE-600)2012154-4</subfield><subfield code="w">(DE-576)095299947</subfield><subfield code="x">1873-4936</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:866</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">866</subfield></datafield></record></collection>
|
score |
7.399272 |