CBA-GAN: Cartoonization style transformation based on the convolutional attention module
Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial...
Ausführliche Beschreibung
Autor*in: |
Zhang, Feng [verfasserIn] Zhao, Huihuang [verfasserIn] Li, Yuhua [verfasserIn] Wu, Yichun [verfasserIn] Sun, Xianfang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & electrical engineering - Amsterdam [u.a.] : Elsevier Science, 1973, 106 |
---|---|
Übergeordnetes Werk: |
volume:106 |
DOI / URN: |
10.1016/j.compeleceng.2022.108575 |
---|
Katalog-ID: |
ELV009237631 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009237631 | ||
003 | DE-627 | ||
005 | 20231103093254.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compeleceng.2022.108575 |2 doi | |
035 | |a (DE-627)ELV009237631 | ||
035 | |a (ELSEVIER)S0045-7906(22)00790-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.00 |2 bkl | ||
084 | |a 35.06 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Zhang, Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. | ||
650 | 4 | |a Cartoonization | |
650 | 4 | |a Convolutional block attention | |
650 | 4 | |a Edge detection | |
650 | 4 | |a Attention | |
650 | 4 | |a Generative adversarial networks | |
700 | 1 | |a Zhao, Huihuang |e verfasserin |4 aut | |
700 | 1 | |a Li, Yuhua |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yichun |e verfasserin |4 aut | |
700 | 1 | |a Sun, Xianfang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & electrical engineering |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 106 |h Online-Ressource |w (DE-627)306715872 |w (DE-600)1501325-X |w (DE-576)094531293 |x 1879-0755 |7 nnns |
773 | 1 | 8 | |g volume:106 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.00 |j Elektrotechnik: Allgemeines |q VZ |
936 | b | k | |a 35.06 |j Computeranwendungen |x Chemie |q VZ |
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 106 |
author_variant |
f z fz h z hz y l yl y w yw x s xs |
---|---|
matchkey_str |
article:18790755:2023----::bgnatoiaintltasomtobsdnhcnou |
hierarchy_sort_str |
2023 |
bklnumber |
53.00 35.06 54.00 |
publishDate |
2023 |
allfields |
10.1016/j.compeleceng.2022.108575 doi (DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X DE-627 ger DE-627 rda eng 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Zhang, Feng verfasserin aut CBA-GAN: Cartoonization style transformation based on the convolutional attention module 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks Zhao, Huihuang verfasserin aut Li, Yuhua verfasserin aut Wu, Yichun verfasserin aut Sun, Xianfang verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 106 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:106 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 106 |
spelling |
10.1016/j.compeleceng.2022.108575 doi (DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X DE-627 ger DE-627 rda eng 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Zhang, Feng verfasserin aut CBA-GAN: Cartoonization style transformation based on the convolutional attention module 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks Zhao, Huihuang verfasserin aut Li, Yuhua verfasserin aut Wu, Yichun verfasserin aut Sun, Xianfang verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 106 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:106 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 106 |
allfields_unstemmed |
10.1016/j.compeleceng.2022.108575 doi (DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X DE-627 ger DE-627 rda eng 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Zhang, Feng verfasserin aut CBA-GAN: Cartoonization style transformation based on the convolutional attention module 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks Zhao, Huihuang verfasserin aut Li, Yuhua verfasserin aut Wu, Yichun verfasserin aut Sun, Xianfang verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 106 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:106 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 106 |
allfieldsGer |
10.1016/j.compeleceng.2022.108575 doi (DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X DE-627 ger DE-627 rda eng 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Zhang, Feng verfasserin aut CBA-GAN: Cartoonization style transformation based on the convolutional attention module 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks Zhao, Huihuang verfasserin aut Li, Yuhua verfasserin aut Wu, Yichun verfasserin aut Sun, Xianfang verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 106 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:106 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 106 |
allfieldsSound |
10.1016/j.compeleceng.2022.108575 doi (DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X DE-627 ger DE-627 rda eng 620 VZ 53.00 bkl 35.06 bkl 54.00 bkl Zhang, Feng verfasserin aut CBA-GAN: Cartoonization style transformation based on the convolutional attention module 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks Zhao, Huihuang verfasserin aut Li, Yuhua verfasserin aut Wu, Yichun verfasserin aut Sun, Xianfang verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 106 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:106 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.00 Elektrotechnik: Allgemeines VZ 35.06 Computeranwendungen Chemie VZ 54.00 Informatik: Allgemeines VZ AR 106 |
language |
English |
source |
Enthalten in Computers & electrical engineering 106 volume:106 |
sourceStr |
Enthalten in Computers & electrical engineering 106 volume:106 |
format_phy_str_mv |
Article |
bklname |
Elektrotechnik: Allgemeines Computeranwendungen Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Computers & electrical engineering |
authorswithroles_txt_mv |
Zhang, Feng @@aut@@ Zhao, Huihuang @@aut@@ Li, Yuhua @@aut@@ Wu, Yichun @@aut@@ Sun, Xianfang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306715872 |
dewey-sort |
3620 |
id |
ELV009237631 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009237631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2022.108575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009237631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(22)00790-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CBA-GAN: Cartoonization style transformation based on the convolutional attention module</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartoonization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional block attention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generative adversarial networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Huihuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xianfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & electrical engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">106</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306715872</subfield><subfield code="w">(DE-600)1501325-X</subfield><subfield code="w">(DE-576)094531293</subfield><subfield code="x">1879-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield></datafield></record></collection>
|
author |
Zhang, Feng |
spellingShingle |
Zhang, Feng ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Cartoonization misc Convolutional block attention misc Edge detection misc Attention misc Generative adversarial networks CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
authorStr |
Zhang, Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306715872 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0755 |
topic_title |
620 VZ 53.00 bkl 35.06 bkl 54.00 bkl CBA-GAN: Cartoonization style transformation based on the convolutional attention module Cartoonization Convolutional block attention Edge detection Attention Generative adversarial networks |
topic |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Cartoonization misc Convolutional block attention misc Edge detection misc Attention misc Generative adversarial networks |
topic_unstemmed |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Cartoonization misc Convolutional block attention misc Edge detection misc Attention misc Generative adversarial networks |
topic_browse |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Cartoonization misc Convolutional block attention misc Edge detection misc Attention misc Generative adversarial networks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & electrical engineering |
hierarchy_parent_id |
306715872 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Computers & electrical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 |
title |
CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
ctrlnum |
(DE-627)ELV009237631 (ELSEVIER)S0045-7906(22)00790-X |
title_full |
CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
author_sort |
Zhang, Feng |
journal |
Computers & electrical engineering |
journalStr |
Computers & electrical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Feng Zhao, Huihuang Li, Yuhua Wu, Yichun Sun, Xianfang |
container_volume |
106 |
class |
620 VZ 53.00 bkl 35.06 bkl 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Feng |
doi_str_mv |
10.1016/j.compeleceng.2022.108575 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
cba-gan: cartoonization style transformation based on the convolutional attention module |
title_auth |
CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
abstract |
Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. |
abstractGer |
Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. |
abstract_unstemmed |
Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
CBA-GAN: Cartoonization style transformation based on the convolutional attention module |
remote_bool |
true |
author2 |
Zhao, Huihuang Li, Yuhua Wu, Yichun Sun, Xianfang |
author2Str |
Zhao, Huihuang Li, Yuhua Wu, Yichun Sun, Xianfang |
ppnlink |
306715872 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compeleceng.2022.108575 |
up_date |
2024-07-06T22:28:28.475Z |
_version_ |
1803870439711178752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009237631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2022.108575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009237631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(22)00790-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CBA-GAN: Cartoonization style transformation based on the convolutional attention module</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cartoonization is a widely practiced art form that has been integrated into every aspect of our life. Although cartoonization has made significant progress, it is still challenging to produce high-quality graphics. In this paper, a new model named Convolutional Block Attention Generative Adversarial Networks (CBA-GAN) is proposed to transform real photos into cartoonish images. The proposed method can multiply the feature images of the input image to achieve adaptive feature optimization, and can flexibly adjust the proportion of edge, texture and smoothness in the image effect, without generating redundant edges, and can better deal with shadows in the image. The experimental data set consists of content images (real scenes or photos) and style images (cartoon images), among which the content images are mainly divided into face photos, animals, food, scenes and so on. The experimental results on different types of images show that the performance of this method is better than the existing three representative methods, and it has good robustness. At the same time, the style image data set in this paper comes from animation video, therefore this method can be easily transferred to the cartoon of video.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartoonization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional block attention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generative adversarial networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Huihuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xianfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & electrical engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">106</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306715872</subfield><subfield code="w">(DE-600)1501325-X</subfield><subfield code="w">(DE-576)094531293</subfield><subfield code="x">1879-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield></datafield></record></collection>
|
score |
7.4009123 |