Phenomenology and kinetics of sessile droplet evaporation on convex contours
In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature sy...
Ausführliche Beschreibung
Autor*in: |
Paul, Arnov [verfasserIn] Dash, Rajib Kumar [verfasserIn] Dhar, Purbarun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermal sciences - Amsterdam [u.a.] : Elsevier Science, 1996, 187 |
---|---|
Übergeordnetes Werk: |
volume:187 |
DOI / URN: |
10.1016/j.ijthermalsci.2023.108194 |
---|
Katalog-ID: |
ELV009248382 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009248382 | ||
003 | DE-627 | ||
005 | 20230524131607.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijthermalsci.2023.108194 |2 doi | |
035 | |a (DE-627)ELV009248382 | ||
035 | |a (ELSEVIER)S1290-0729(23)00055-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Paul, Arnov |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phenomenology and kinetics of sessile droplet evaporation on convex contours |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. | ||
650 | 4 | |a Sessile droplet | |
650 | 4 | |a Convex substrate | |
650 | 4 | |a Evaporation | |
650 | 4 | |a Marangoni effect | |
650 | 4 | |a Droplets | |
700 | 1 | |a Dash, Rajib Kumar |e verfasserin |4 aut | |
700 | 1 | |a Dhar, Purbarun |e verfasserin |0 (orcid)0000-0001-5473-2993 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermal sciences |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 187 |h Online-Ressource |w (DE-627)320509982 |w (DE-600)2013298-0 |w (DE-576)259271438 |x 1778-4166 |7 nnns |
773 | 1 | 8 | |g volume:187 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 187 |
author_variant |
a p ap r k d rk rkd p d pd |
---|---|
matchkey_str |
article:17784166:2023----::hnmnlgadieisfesldoltvprt |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijthermalsci.2023.108194 doi (DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Paul, Arnov verfasserin aut Phenomenology and kinetics of sessile droplet evaporation on convex contours 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. Sessile droplet Convex substrate Evaporation Marangoni effect Droplets Dash, Rajib Kumar verfasserin aut Dhar, Purbarun verfasserin (orcid)0000-0001-5473-2993 aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 187 |
spelling |
10.1016/j.ijthermalsci.2023.108194 doi (DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Paul, Arnov verfasserin aut Phenomenology and kinetics of sessile droplet evaporation on convex contours 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. Sessile droplet Convex substrate Evaporation Marangoni effect Droplets Dash, Rajib Kumar verfasserin aut Dhar, Purbarun verfasserin (orcid)0000-0001-5473-2993 aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 187 |
allfields_unstemmed |
10.1016/j.ijthermalsci.2023.108194 doi (DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Paul, Arnov verfasserin aut Phenomenology and kinetics of sessile droplet evaporation on convex contours 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. Sessile droplet Convex substrate Evaporation Marangoni effect Droplets Dash, Rajib Kumar verfasserin aut Dhar, Purbarun verfasserin (orcid)0000-0001-5473-2993 aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 187 |
allfieldsGer |
10.1016/j.ijthermalsci.2023.108194 doi (DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Paul, Arnov verfasserin aut Phenomenology and kinetics of sessile droplet evaporation on convex contours 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. Sessile droplet Convex substrate Evaporation Marangoni effect Droplets Dash, Rajib Kumar verfasserin aut Dhar, Purbarun verfasserin (orcid)0000-0001-5473-2993 aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 187 |
allfieldsSound |
10.1016/j.ijthermalsci.2023.108194 doi (DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Paul, Arnov verfasserin aut Phenomenology and kinetics of sessile droplet evaporation on convex contours 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. Sessile droplet Convex substrate Evaporation Marangoni effect Droplets Dash, Rajib Kumar verfasserin aut Dhar, Purbarun verfasserin (orcid)0000-0001-5473-2993 aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 187 |
language |
English |
source |
Enthalten in International journal of thermal sciences 187 volume:187 |
sourceStr |
Enthalten in International journal of thermal sciences 187 volume:187 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Sessile droplet Convex substrate Evaporation Marangoni effect Droplets |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermal sciences |
authorswithroles_txt_mv |
Paul, Arnov @@aut@@ Dash, Rajib Kumar @@aut@@ Dhar, Purbarun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320509982 |
dewey-sort |
3530 |
id |
ELV009248382 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009248382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2023.108194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009248382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(23)00055-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paul, Arnov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phenomenology and kinetics of sessile droplet evaporation on convex contours</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sessile droplet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex substrate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marangoni effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplets</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dash, Rajib Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhar, Purbarun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5473-2993</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
author |
Paul, Arnov |
spellingShingle |
Paul, Arnov ddc 530 bkl 50.38 misc Sessile droplet misc Convex substrate misc Evaporation misc Marangoni effect misc Droplets Phenomenology and kinetics of sessile droplet evaporation on convex contours |
authorStr |
Paul, Arnov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509982 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1778-4166 |
topic_title |
530 620 DE-600 50.38 bkl Phenomenology and kinetics of sessile droplet evaporation on convex contours Sessile droplet Convex substrate Evaporation Marangoni effect Droplets |
topic |
ddc 530 bkl 50.38 misc Sessile droplet misc Convex substrate misc Evaporation misc Marangoni effect misc Droplets |
topic_unstemmed |
ddc 530 bkl 50.38 misc Sessile droplet misc Convex substrate misc Evaporation misc Marangoni effect misc Droplets |
topic_browse |
ddc 530 bkl 50.38 misc Sessile droplet misc Convex substrate misc Evaporation misc Marangoni effect misc Droplets |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of thermal sciences |
hierarchy_parent_id |
320509982 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
International journal of thermal sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 |
title |
Phenomenology and kinetics of sessile droplet evaporation on convex contours |
ctrlnum |
(DE-627)ELV009248382 (ELSEVIER)S1290-0729(23)00055-8 |
title_full |
Phenomenology and kinetics of sessile droplet evaporation on convex contours |
author_sort |
Paul, Arnov |
journal |
International journal of thermal sciences |
journalStr |
International journal of thermal sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Paul, Arnov Dash, Rajib Kumar Dhar, Purbarun |
container_volume |
187 |
class |
530 620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Paul, Arnov |
doi_str_mv |
10.1016/j.ijthermalsci.2023.108194 |
normlink |
(ORCID)0000-0001-5473-2993 |
normlink_prefix_str_mv |
(orcid)0000-0001-5473-2993 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
phenomenology and kinetics of sessile droplet evaporation on convex contours |
title_auth |
Phenomenology and kinetics of sessile droplet evaporation on convex contours |
abstract |
In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. |
abstractGer |
In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. |
abstract_unstemmed |
In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Phenomenology and kinetics of sessile droplet evaporation on convex contours |
remote_bool |
true |
author2 |
Dash, Rajib Kumar Dhar, Purbarun |
author2Str |
Dash, Rajib Kumar Dhar, Purbarun |
ppnlink |
320509982 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijthermalsci.2023.108194 |
up_date |
2024-07-06T22:30:46.927Z |
_version_ |
1803870584887574528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009248382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2023.108194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009248382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(23)00055-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paul, Arnov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phenomenology and kinetics of sessile droplet evaporation on convex contours</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article we probe experimentally and theoretically the evaporation phenomenology and kinetics of sessile droplets seated over convex hydrophilic and super-hydrophobic (SH) surfaces. To understand the role of convex contours, both cylinders (mono-curvature system) and spheres (two-curvature system) have been explored. The evolution of the droplet shape during evaporation was monitored by optical imaging. The observations reveal improved evaporation rates on convex substrates, and the same tends to increase with increasing curvature. The findings also show that the influence of a two-curvature system (sphere) on the evaporation rate is to a higher extent than that for a mono-curvature system (cylinder). These observations are attributed to the augmented liquid-vapor interfacial area and widened up vapor diffusion domain which renders the liquid-molecules more scope to diffuse in the surrounding environment. The dynamic behavior of the triple line (TL) on convex substrates shows higher receding velocity of the contact line especially on spherical substrates. To visualize the internal flow and understand the effect of substrate convexity on internal advection dynamics, particle image velocimetry (PIV) was carried out. These results show higher strength of circulation velocity inside a droplet evaporating over convex surfaces despite frequent de-pinning of contact line. This behavior can be explicated by the fact than on convex surfaces higher temperature gradient exists along the liquid-vapor interface of the droplet (due to more evaporative cooling, and mapped through infrared thermography), which induces stronger thermal-Marangoni convection, thereby scaling up the circulation velocity. The finding may hold implications towards the design and development of droplet-based thermofluidic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sessile droplet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex substrate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marangoni effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplets</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dash, Rajib Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhar, Purbarun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5473-2993</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
score |
7.4011927 |