A cluster analysis approach to sampling domestic properties for sensor deployment
Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or a...
Ausführliche Beschreibung
Autor*in: |
Menneer, Tamaryn [verfasserIn] Mueller, Markus [verfasserIn] Townley, Stuart [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Building and environment - New York, NY [u.a.] : Elsevier, 1976, 231 |
---|---|
Übergeordnetes Werk: |
volume:231 |
DOI / URN: |
10.1016/j.buildenv.2023.110032 |
---|
Katalog-ID: |
ELV009251596 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009251596 | ||
003 | DE-627 | ||
005 | 20230928065627.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.buildenv.2023.110032 |2 doi | |
035 | |a (DE-627)ELV009251596 | ||
035 | |a (ELSEVIER)S0360-1323(23)00059-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 56.00 |2 bkl | ||
100 | 1 | |a Menneer, Tamaryn |e verfasserin |0 (orcid)0000-0001-8575-6867 |4 aut | |
245 | 1 | 0 | |a A cluster analysis approach to sampling domestic properties for sensor deployment |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. | ||
650 | 4 | |a Cluster analysis | |
650 | 4 | |a Representative sampling | |
650 | 4 | |a Sensors | |
650 | 4 | |a Water | |
650 | 4 | |a Energy | |
650 | 4 | |a Environment | |
700 | 1 | |a Mueller, Markus |e verfasserin |0 (orcid)0000-0001-7489-6397 |4 aut | |
700 | 1 | |a Townley, Stuart |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Building and environment |d New York, NY [u.a.] : Elsevier, 1976 |g 231 |h Online-Ressource |w (DE-627)300188773 |w (DE-600)1481962-4 |w (DE-576)104402504 |x 0360-1323 |7 nnns |
773 | 1 | 8 | |g volume:231 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 56.00 |j Bauwesen: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 231 |
author_variant |
t m tm m m mm s t st |
---|---|
matchkey_str |
article:03601323:2023----::cutrnlssprahoapigoetcrpri |
hierarchy_sort_str |
2023 |
bklnumber |
56.00 |
publishDate |
2023 |
allfields |
10.1016/j.buildenv.2023.110032 doi (DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 DE-627 ger DE-627 rda eng 690 VZ 56.00 bkl Menneer, Tamaryn verfasserin (orcid)0000-0001-8575-6867 aut A cluster analysis approach to sampling domestic properties for sensor deployment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. Cluster analysis Representative sampling Sensors Water Energy Environment Mueller, Markus verfasserin (orcid)0000-0001-7489-6397 aut Townley, Stuart verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 231 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:231 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.00 Bauwesen: Allgemeines VZ AR 231 |
spelling |
10.1016/j.buildenv.2023.110032 doi (DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 DE-627 ger DE-627 rda eng 690 VZ 56.00 bkl Menneer, Tamaryn verfasserin (orcid)0000-0001-8575-6867 aut A cluster analysis approach to sampling domestic properties for sensor deployment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. Cluster analysis Representative sampling Sensors Water Energy Environment Mueller, Markus verfasserin (orcid)0000-0001-7489-6397 aut Townley, Stuart verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 231 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:231 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.00 Bauwesen: Allgemeines VZ AR 231 |
allfields_unstemmed |
10.1016/j.buildenv.2023.110032 doi (DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 DE-627 ger DE-627 rda eng 690 VZ 56.00 bkl Menneer, Tamaryn verfasserin (orcid)0000-0001-8575-6867 aut A cluster analysis approach to sampling domestic properties for sensor deployment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. Cluster analysis Representative sampling Sensors Water Energy Environment Mueller, Markus verfasserin (orcid)0000-0001-7489-6397 aut Townley, Stuart verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 231 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:231 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.00 Bauwesen: Allgemeines VZ AR 231 |
allfieldsGer |
10.1016/j.buildenv.2023.110032 doi (DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 DE-627 ger DE-627 rda eng 690 VZ 56.00 bkl Menneer, Tamaryn verfasserin (orcid)0000-0001-8575-6867 aut A cluster analysis approach to sampling domestic properties for sensor deployment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. Cluster analysis Representative sampling Sensors Water Energy Environment Mueller, Markus verfasserin (orcid)0000-0001-7489-6397 aut Townley, Stuart verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 231 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:231 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.00 Bauwesen: Allgemeines VZ AR 231 |
allfieldsSound |
10.1016/j.buildenv.2023.110032 doi (DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 DE-627 ger DE-627 rda eng 690 VZ 56.00 bkl Menneer, Tamaryn verfasserin (orcid)0000-0001-8575-6867 aut A cluster analysis approach to sampling domestic properties for sensor deployment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. Cluster analysis Representative sampling Sensors Water Energy Environment Mueller, Markus verfasserin (orcid)0000-0001-7489-6397 aut Townley, Stuart verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 231 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:231 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.00 Bauwesen: Allgemeines VZ AR 231 |
language |
English |
source |
Enthalten in Building and environment 231 volume:231 |
sourceStr |
Enthalten in Building and environment 231 volume:231 |
format_phy_str_mv |
Article |
bklname |
Bauwesen: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Cluster analysis Representative sampling Sensors Water Energy Environment |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Building and environment |
authorswithroles_txt_mv |
Menneer, Tamaryn @@aut@@ Mueller, Markus @@aut@@ Townley, Stuart @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
300188773 |
dewey-sort |
3690 |
id |
ELV009251596 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009251596</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928065627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.buildenv.2023.110032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009251596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-1323(23)00059-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Menneer, Tamaryn</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8575-6867</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cluster analysis approach to sampling domestic properties for sensor deployment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mueller, Markus</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7489-6397</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Townley, Stuart</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Building and environment</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">231</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300188773</subfield><subfield code="w">(DE-600)1481962-4</subfield><subfield code="w">(DE-576)104402504</subfield><subfield code="x">0360-1323</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="j">Bauwesen: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield></datafield></record></collection>
|
author |
Menneer, Tamaryn |
spellingShingle |
Menneer, Tamaryn ddc 690 bkl 56.00 misc Cluster analysis misc Representative sampling misc Sensors misc Water misc Energy misc Environment A cluster analysis approach to sampling domestic properties for sensor deployment |
authorStr |
Menneer, Tamaryn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300188773 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0360-1323 |
topic_title |
690 VZ 56.00 bkl A cluster analysis approach to sampling domestic properties for sensor deployment Cluster analysis Representative sampling Sensors Water Energy Environment |
topic |
ddc 690 bkl 56.00 misc Cluster analysis misc Representative sampling misc Sensors misc Water misc Energy misc Environment |
topic_unstemmed |
ddc 690 bkl 56.00 misc Cluster analysis misc Representative sampling misc Sensors misc Water misc Energy misc Environment |
topic_browse |
ddc 690 bkl 56.00 misc Cluster analysis misc Representative sampling misc Sensors misc Water misc Energy misc Environment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Building and environment |
hierarchy_parent_id |
300188773 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Building and environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 |
title |
A cluster analysis approach to sampling domestic properties for sensor deployment |
ctrlnum |
(DE-627)ELV009251596 (ELSEVIER)S0360-1323(23)00059-8 |
title_full |
A cluster analysis approach to sampling domestic properties for sensor deployment |
author_sort |
Menneer, Tamaryn |
journal |
Building and environment |
journalStr |
Building and environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Menneer, Tamaryn Mueller, Markus Townley, Stuart |
container_volume |
231 |
class |
690 VZ 56.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Menneer, Tamaryn |
doi_str_mv |
10.1016/j.buildenv.2023.110032 |
normlink |
(ORCID)0000-0001-8575-6867 (ORCID)0000-0001-7489-6397 |
normlink_prefix_str_mv |
(orcid)0000-0001-8575-6867 (orcid)0000-0001-7489-6397 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
a cluster analysis approach to sampling domestic properties for sensor deployment |
title_auth |
A cluster analysis approach to sampling domestic properties for sensor deployment |
abstract |
Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. |
abstractGer |
Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. |
abstract_unstemmed |
Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A cluster analysis approach to sampling domestic properties for sensor deployment |
remote_bool |
true |
author2 |
Mueller, Markus Townley, Stuart |
author2Str |
Mueller, Markus Townley, Stuart |
ppnlink |
300188773 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.buildenv.2023.110032 |
up_date |
2024-07-06T22:31:26.633Z |
_version_ |
1803870626523381760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009251596</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928065627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.buildenv.2023.110032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009251596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-1323(23)00059-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Menneer, Tamaryn</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8575-6867</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cluster analysis approach to sampling domestic properties for sensor deployment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensors are an increasingly widespread tool for monitoring utility usage (e.g., electricity) and environmental data (e.g., temperature). In large-scale projects, it is often impractical and sometimes impossible to place sensors at all sites of interest, for example due to limited sensor numbers or access. We test whether cluster analysis can be used to address this problem. We create clusters of potential sensor sites using factors that may influence sensor measurements. The clusters provide groups of sites that are similar to each other, and that differ between groups. Sampling a few sites from each group provides a subset that captures the diversity of sites. We test the approach with two types of sensors: utility usage (gas and water) and outdoor environment. Using a separate analysis for each sensor type, we create clusters using characteristics from up to 298 potential sites. We sample across these clusters to provide representative coverage for sensor installations. We verify the approach using data from the sensors installed as a result of the sampling, as well as using other sensor measures from all available sites over one year. Results show that sensor data vary across clusters, and vary with the factors used to create the clusters, thereby providing evidence that this cluster-based approach captures differences across sensor sites. This novel methodology provides representative sampling across potential sensor sites. It is generalisable to other sensor types and to any situation in which influencing factors at potential sites are known. We also discuss recommendations for future sensor-based large-scale projects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mueller, Markus</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7489-6397</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Townley, Stuart</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Building and environment</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">231</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300188773</subfield><subfield code="w">(DE-600)1481962-4</subfield><subfield code="w">(DE-576)104402504</subfield><subfield code="x">0360-1323</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="j">Bauwesen: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield></datafield></record></collection>
|
score |
7.401326 |