Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane
Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obt...
Ausführliche Beschreibung
Autor*in: |
Wang, Shasha [verfasserIn] Fang, Quan [verfasserIn] Liu, Chao [verfasserIn] Zhang, Jie [verfasserIn] Jiang, Yaqiang [verfasserIn] Huang, Yi [verfasserIn] Yang, Man [verfasserIn] Tan, Zhezhe [verfasserIn] He, Yunlong [verfasserIn] Ji, Ben [verfasserIn] Qi, Congrui [verfasserIn] Chen, Yue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: European polymer journal - New York, NY [u.a.] : Elsevier, 1965, 187 |
---|---|
Übergeordnetes Werk: |
volume:187 |
DOI / URN: |
10.1016/j.eurpolymj.2023.111897 |
---|
Katalog-ID: |
ELV00935199X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00935199X | ||
003 | DE-627 | ||
005 | 20230524132156.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eurpolymj.2023.111897 |2 doi | |
035 | |a (DE-627)ELV00935199X | ||
035 | |a (ELSEVIER)S0014-3057(23)00080-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DE-600 |
084 | |a 35.80 |2 bkl | ||
100 | 1 | |a Wang, Shasha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. | ||
650 | 4 | |a Thermoplastic polyurethane | |
650 | 4 | |a Ammonium polyphosphate | |
650 | 4 | |a Tannic acid | |
650 | 4 | |a Mechanical properties | |
650 | 4 | |a Flame retardancy | |
700 | 1 | |a Fang, Quan |e verfasserin |4 aut | |
700 | 1 | |a Liu, Chao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jie |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Yaqiang |e verfasserin |4 aut | |
700 | 1 | |a Huang, Yi |e verfasserin |4 aut | |
700 | 1 | |a Yang, Man |e verfasserin |4 aut | |
700 | 1 | |a Tan, Zhezhe |e verfasserin |4 aut | |
700 | 1 | |a He, Yunlong |e verfasserin |4 aut | |
700 | 1 | |a Ji, Ben |e verfasserin |4 aut | |
700 | 1 | |a Qi, Congrui |e verfasserin |4 aut | |
700 | 1 | |a Chen, Yue |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European polymer journal |d New York, NY [u.a.] : Elsevier, 1965 |g 187 |h Online-Ressource |w (DE-627)300897375 |w (DE-600)1483529-0 |w (DE-576)259270830 |7 nnns |
773 | 1 | 8 | |g volume:187 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.80 |j Makromolekulare Chemie |
951 | |a AR | ||
952 | |d 187 |
author_variant |
s w sw q f qf c l cl j z jz y j yj y h yh m y my z t zt y h yh b j bj c q cq y c yc |
---|---|
matchkey_str |
wangshashafangquanliuchaozhangjiejiangya:2023----:imstniaiitreitdufcfntoaiainfmoimoyhshtfrnacnfrsftadmks |
hierarchy_sort_str |
2023 |
bklnumber |
35.80 |
publishDate |
2023 |
allfields |
10.1016/j.eurpolymj.2023.111897 doi (DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 DE-627 ger DE-627 rda eng 670 DE-600 35.80 bkl Wang, Shasha verfasserin aut Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy Fang, Quan verfasserin aut Liu, Chao verfasserin aut Zhang, Jie verfasserin aut Jiang, Yaqiang verfasserin aut Huang, Yi verfasserin aut Yang, Man verfasserin aut Tan, Zhezhe verfasserin aut He, Yunlong verfasserin aut Ji, Ben verfasserin aut Qi, Congrui verfasserin aut Chen, Yue verfasserin aut Enthalten in European polymer journal New York, NY [u.a.] : Elsevier, 1965 187 Online-Ressource (DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.80 Makromolekulare Chemie AR 187 |
spelling |
10.1016/j.eurpolymj.2023.111897 doi (DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 DE-627 ger DE-627 rda eng 670 DE-600 35.80 bkl Wang, Shasha verfasserin aut Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy Fang, Quan verfasserin aut Liu, Chao verfasserin aut Zhang, Jie verfasserin aut Jiang, Yaqiang verfasserin aut Huang, Yi verfasserin aut Yang, Man verfasserin aut Tan, Zhezhe verfasserin aut He, Yunlong verfasserin aut Ji, Ben verfasserin aut Qi, Congrui verfasserin aut Chen, Yue verfasserin aut Enthalten in European polymer journal New York, NY [u.a.] : Elsevier, 1965 187 Online-Ressource (DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.80 Makromolekulare Chemie AR 187 |
allfields_unstemmed |
10.1016/j.eurpolymj.2023.111897 doi (DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 DE-627 ger DE-627 rda eng 670 DE-600 35.80 bkl Wang, Shasha verfasserin aut Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy Fang, Quan verfasserin aut Liu, Chao verfasserin aut Zhang, Jie verfasserin aut Jiang, Yaqiang verfasserin aut Huang, Yi verfasserin aut Yang, Man verfasserin aut Tan, Zhezhe verfasserin aut He, Yunlong verfasserin aut Ji, Ben verfasserin aut Qi, Congrui verfasserin aut Chen, Yue verfasserin aut Enthalten in European polymer journal New York, NY [u.a.] : Elsevier, 1965 187 Online-Ressource (DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.80 Makromolekulare Chemie AR 187 |
allfieldsGer |
10.1016/j.eurpolymj.2023.111897 doi (DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 DE-627 ger DE-627 rda eng 670 DE-600 35.80 bkl Wang, Shasha verfasserin aut Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy Fang, Quan verfasserin aut Liu, Chao verfasserin aut Zhang, Jie verfasserin aut Jiang, Yaqiang verfasserin aut Huang, Yi verfasserin aut Yang, Man verfasserin aut Tan, Zhezhe verfasserin aut He, Yunlong verfasserin aut Ji, Ben verfasserin aut Qi, Congrui verfasserin aut Chen, Yue verfasserin aut Enthalten in European polymer journal New York, NY [u.a.] : Elsevier, 1965 187 Online-Ressource (DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.80 Makromolekulare Chemie AR 187 |
allfieldsSound |
10.1016/j.eurpolymj.2023.111897 doi (DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 DE-627 ger DE-627 rda eng 670 DE-600 35.80 bkl Wang, Shasha verfasserin aut Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy Fang, Quan verfasserin aut Liu, Chao verfasserin aut Zhang, Jie verfasserin aut Jiang, Yaqiang verfasserin aut Huang, Yi verfasserin aut Yang, Man verfasserin aut Tan, Zhezhe verfasserin aut He, Yunlong verfasserin aut Ji, Ben verfasserin aut Qi, Congrui verfasserin aut Chen, Yue verfasserin aut Enthalten in European polymer journal New York, NY [u.a.] : Elsevier, 1965 187 Online-Ressource (DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.80 Makromolekulare Chemie AR 187 |
language |
English |
source |
Enthalten in European polymer journal 187 volume:187 |
sourceStr |
Enthalten in European polymer journal 187 volume:187 |
format_phy_str_mv |
Article |
bklname |
Makromolekulare Chemie |
institution |
findex.gbv.de |
topic_facet |
Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
European polymer journal |
authorswithroles_txt_mv |
Wang, Shasha @@aut@@ Fang, Quan @@aut@@ Liu, Chao @@aut@@ Zhang, Jie @@aut@@ Jiang, Yaqiang @@aut@@ Huang, Yi @@aut@@ Yang, Man @@aut@@ Tan, Zhezhe @@aut@@ He, Yunlong @@aut@@ Ji, Ben @@aut@@ Qi, Congrui @@aut@@ Chen, Yue @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
300897375 |
dewey-sort |
3670 |
id |
ELV00935199X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00935199X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eurpolymj.2023.111897</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00935199X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0014-3057(23)00080-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoplastic polyurethane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonium polyphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tannic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flame retardancy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yaqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Zhezhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Congrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European polymer journal</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897375</subfield><subfield code="w">(DE-600)1483529-0</subfield><subfield code="w">(DE-576)259270830</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
author |
Wang, Shasha |
spellingShingle |
Wang, Shasha ddc 670 bkl 35.80 misc Thermoplastic polyurethane misc Ammonium polyphosphate misc Tannic acid misc Mechanical properties misc Flame retardancy Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
authorStr |
Wang, Shasha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300897375 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 DE-600 35.80 bkl Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane Thermoplastic polyurethane Ammonium polyphosphate Tannic acid Mechanical properties Flame retardancy |
topic |
ddc 670 bkl 35.80 misc Thermoplastic polyurethane misc Ammonium polyphosphate misc Tannic acid misc Mechanical properties misc Flame retardancy |
topic_unstemmed |
ddc 670 bkl 35.80 misc Thermoplastic polyurethane misc Ammonium polyphosphate misc Tannic acid misc Mechanical properties misc Flame retardancy |
topic_browse |
ddc 670 bkl 35.80 misc Thermoplastic polyurethane misc Ammonium polyphosphate misc Tannic acid misc Mechanical properties misc Flame retardancy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European polymer journal |
hierarchy_parent_id |
300897375 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
European polymer journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300897375 (DE-600)1483529-0 (DE-576)259270830 |
title |
Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
ctrlnum |
(DE-627)ELV00935199X (ELSEVIER)S0014-3057(23)00080-0 |
title_full |
Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
author_sort |
Wang, Shasha |
journal |
European polymer journal |
journalStr |
European polymer journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Shasha Fang, Quan Liu, Chao Zhang, Jie Jiang, Yaqiang Huang, Yi Yang, Man Tan, Zhezhe He, Yunlong Ji, Ben Qi, Congrui Chen, Yue |
container_volume |
187 |
class |
670 DE-600 35.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Shasha |
doi_str_mv |
10.1016/j.eurpolymj.2023.111897 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
title_auth |
Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
abstract |
Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. |
abstractGer |
Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. |
abstract_unstemmed |
Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane |
remote_bool |
true |
author2 |
Fang, Quan Liu, Chao Zhang, Jie Jiang, Yaqiang Huang, Yi Yang, Man Tan, Zhezhe He, Yunlong Ji, Ben Qi, Congrui Chen, Yue |
author2Str |
Fang, Quan Liu, Chao Zhang, Jie Jiang, Yaqiang Huang, Yi Yang, Man Tan, Zhezhe He, Yunlong Ji, Ben Qi, Congrui Chen, Yue |
ppnlink |
300897375 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eurpolymj.2023.111897 |
up_date |
2024-07-06T22:51:44.353Z |
_version_ |
1803871903395348480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00935199X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eurpolymj.2023.111897</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00935199X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0014-3057(23)00080-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hierarchical ammonium polyphosphate (HAPP) was designed and fabricated by means of a simple strategy. FeOOH nanoparticles were decorated onto the APP surface based on the universal surface-adaptive interfacial adhesion of tannic acid (TA) and then modified by using polydimethylsiloxane (PDMS) to obtain HAPP. Owing to unique microstructure, the introduction of HAPP not only endows thermoplastic polyurethane (TPU) with admirable flame retardancy, but also presents excellent interfacial compatibility. The Young’s modulus, tensile strength and elongation at break of TPU composite with 5 wt% HAPP are increased by 4.3 %, 11.0 % and 16.6 %, respectively, relative to the values for TPU composite containing 5 wt% APP. Furthermore, TPU composite including 5 wt% HAPP achieve a UL-94 V-0 rating with the maximum limiting oxygen index value. Compared to those of TPU, the peak heat release rate, total heat release and total smoke production of TPU composite with 5 wt% HAPP are remarkably decreased with the reduction of 57.7 %, 23.1 % and 82.3 %, respectively. The proposed combination of transition metal oxides and low surface energy material is expected to reinforce the interfacial adhesion force between the APP and the polymer matrix and then inspires new strategies to construct polymer composites with excellent comprehensive properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoplastic polyurethane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonium polyphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tannic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flame retardancy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yaqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Zhezhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yunlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Congrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European polymer journal</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897375</subfield><subfield code="w">(DE-600)1483529-0</subfield><subfield code="w">(DE-576)259270830</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
score |
7.3990602 |