Study of two-phase flow characteristics in the interrupted microchannels
The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method...
Ausführliche Beschreibung
Autor*in: |
Tian, Yusi [verfasserIn] Jiao, Yonggang [verfasserIn] Han, Fei [verfasserIn] Cheng, Zuo [verfasserIn] Li, Jian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermal sciences - Amsterdam [u.a.] : Elsevier Science, 1996, 188 |
---|---|
Übergeordnetes Werk: |
volume:188 |
DOI / URN: |
10.1016/j.ijthermalsci.2023.108211 |
---|
Katalog-ID: |
ELV009373470 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009373470 | ||
003 | DE-627 | ||
005 | 20230524131607.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijthermalsci.2023.108211 |2 doi | |
035 | |a (DE-627)ELV009373470 | ||
035 | |a (ELSEVIER)S1290-0729(23)00072-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Tian, Yusi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of two-phase flow characteristics in the interrupted microchannels |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. | ||
650 | 4 | |a Microchannel | |
650 | 4 | |a Two-phase flow | |
650 | 4 | |a Flow pattern | |
650 | 4 | |a Flow distribution | |
650 | 4 | |a Pressure drop | |
700 | 1 | |a Jiao, Yonggang |e verfasserin |4 aut | |
700 | 1 | |a Han, Fei |e verfasserin |4 aut | |
700 | 1 | |a Cheng, Zuo |e verfasserin |4 aut | |
700 | 1 | |a Li, Jian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermal sciences |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 188 |h Online-Ressource |w (DE-627)320509982 |w (DE-600)2013298-0 |w (DE-576)259271438 |x 1778-4166 |7 nnns |
773 | 1 | 8 | |g volume:188 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 188 |
author_variant |
y t yt y j yj f h fh z c zc j l jl |
---|---|
matchkey_str |
article:17784166:2023----::tdotohsfocaatrsisnhitr |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijthermalsci.2023.108211 doi (DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Tian, Yusi verfasserin aut Study of two-phase flow characteristics in the interrupted microchannels 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop Jiao, Yonggang verfasserin aut Han, Fei verfasserin aut Cheng, Zuo verfasserin aut Li, Jian verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 188 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:188 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 188 |
spelling |
10.1016/j.ijthermalsci.2023.108211 doi (DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Tian, Yusi verfasserin aut Study of two-phase flow characteristics in the interrupted microchannels 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop Jiao, Yonggang verfasserin aut Han, Fei verfasserin aut Cheng, Zuo verfasserin aut Li, Jian verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 188 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:188 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 188 |
allfields_unstemmed |
10.1016/j.ijthermalsci.2023.108211 doi (DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Tian, Yusi verfasserin aut Study of two-phase flow characteristics in the interrupted microchannels 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop Jiao, Yonggang verfasserin aut Han, Fei verfasserin aut Cheng, Zuo verfasserin aut Li, Jian verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 188 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:188 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 188 |
allfieldsGer |
10.1016/j.ijthermalsci.2023.108211 doi (DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Tian, Yusi verfasserin aut Study of two-phase flow characteristics in the interrupted microchannels 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop Jiao, Yonggang verfasserin aut Han, Fei verfasserin aut Cheng, Zuo verfasserin aut Li, Jian verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 188 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:188 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 188 |
allfieldsSound |
10.1016/j.ijthermalsci.2023.108211 doi (DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Tian, Yusi verfasserin aut Study of two-phase flow characteristics in the interrupted microchannels 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop Jiao, Yonggang verfasserin aut Han, Fei verfasserin aut Cheng, Zuo verfasserin aut Li, Jian verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 188 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:188 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 188 |
language |
English |
source |
Enthalten in International journal of thermal sciences 188 volume:188 |
sourceStr |
Enthalten in International journal of thermal sciences 188 volume:188 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermal sciences |
authorswithroles_txt_mv |
Tian, Yusi @@aut@@ Jiao, Yonggang @@aut@@ Han, Fei @@aut@@ Cheng, Zuo @@aut@@ Li, Jian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320509982 |
dewey-sort |
3530 |
id |
ELV009373470 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009373470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2023.108211</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009373470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(23)00072-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Yusi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of two-phase flow characteristics in the interrupted microchannels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microchannel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-phase flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure drop</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiao, Yonggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Zuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">188</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield></datafield></record></collection>
|
author |
Tian, Yusi |
spellingShingle |
Tian, Yusi ddc 530 bkl 50.38 misc Microchannel misc Two-phase flow misc Flow pattern misc Flow distribution misc Pressure drop Study of two-phase flow characteristics in the interrupted microchannels |
authorStr |
Tian, Yusi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509982 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1778-4166 |
topic_title |
530 620 DE-600 50.38 bkl Study of two-phase flow characteristics in the interrupted microchannels Microchannel Two-phase flow Flow pattern Flow distribution Pressure drop |
topic |
ddc 530 bkl 50.38 misc Microchannel misc Two-phase flow misc Flow pattern misc Flow distribution misc Pressure drop |
topic_unstemmed |
ddc 530 bkl 50.38 misc Microchannel misc Two-phase flow misc Flow pattern misc Flow distribution misc Pressure drop |
topic_browse |
ddc 530 bkl 50.38 misc Microchannel misc Two-phase flow misc Flow pattern misc Flow distribution misc Pressure drop |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of thermal sciences |
hierarchy_parent_id |
320509982 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
International journal of thermal sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 |
title |
Study of two-phase flow characteristics in the interrupted microchannels |
ctrlnum |
(DE-627)ELV009373470 (ELSEVIER)S1290-0729(23)00072-8 |
title_full |
Study of two-phase flow characteristics in the interrupted microchannels |
author_sort |
Tian, Yusi |
journal |
International journal of thermal sciences |
journalStr |
International journal of thermal sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Tian, Yusi Jiao, Yonggang Han, Fei Cheng, Zuo Li, Jian |
container_volume |
188 |
class |
530 620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, Yusi |
doi_str_mv |
10.1016/j.ijthermalsci.2023.108211 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
study of two-phase flow characteristics in the interrupted microchannels |
title_auth |
Study of two-phase flow characteristics in the interrupted microchannels |
abstract |
The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. |
abstractGer |
The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. |
abstract_unstemmed |
The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Study of two-phase flow characteristics in the interrupted microchannels |
remote_bool |
true |
author2 |
Jiao, Yonggang Han, Fei Cheng, Zuo Li, Jian |
author2Str |
Jiao, Yonggang Han, Fei Cheng, Zuo Li, Jian |
ppnlink |
320509982 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijthermalsci.2023.108211 |
up_date |
2024-07-06T22:56:07.930Z |
_version_ |
1803872179775864832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009373470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131607.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2023.108211</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009373470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(23)00072-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Yusi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of two-phase flow characteristics in the interrupted microchannels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The key factor restricting the use of microchannels in the cooling of micro-electronic equipment is the non-uniformity of the flow and temperature distribution. In this paper, the structure of the interrupted microchannel is improved by numerical simulation, coupling the Volume of Fluid (VOF) method with the Level-Set (LS) method to quantify the two-phase characteristics of the new microchannel using gas-liquid flow ratios, relative standard deviations, and pressure drop fluctuations. The simulation results proved that the effect of inertia force is largely offset by the widening design of the two side branches, and the flow resistance in the downstream branches is balanced. The effect of microchannel boiling heat transfer was enhanced by gas-liquid phase separation, and the gas flow relative standard deviation value of the interrupted microchannel was 83.1% lower than that of the traditional microchannel at the limit of high void fraction. The liquid-phase flow ratio increases with the inlet void fraction increasing, while the gas-phase flow ratio decreases. The relative standard deviation of the gas-to-liquid flow ratios were 0.215 and 0.134 for an inlet gas volume fraction of 0.2 and the mass flow rate of 80 kg/h, respectively, at which point the flow distribution was supported by the relative standard deviation. In addition, the fluctuation of pressure drop in different pipeline sections is opposite to the changing trend of void fraction, and the fluctuation frequency is the same. At the same time, the amplitude of pressure difference fluctuation under different flow patterns is defined, which provides a new idea for future flow pattern judgment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microchannel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-phase flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure drop</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiao, Yonggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Zuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">188</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield></datafield></record></collection>
|
score |
7.4012938 |