Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning
Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seiz...
Ausführliche Beschreibung
Autor*in: |
Varlı, Muhammet [verfasserIn] Yılmaz, Hakan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational science - Amsterdam [u.a.] : Elsevier, 2010, 67 |
---|---|
Übergeordnetes Werk: |
volume:67 |
DOI / URN: |
10.1016/j.jocs.2023.101943 |
---|
Katalog-ID: |
ELV009375287 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009375287 | ||
003 | DE-627 | ||
005 | 20230524122131.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jocs.2023.101943 |2 doi | |
035 | |a (DE-627)ELV009375287 | ||
035 | |a (ELSEVIER)S1877-7503(23)00003-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
100 | 1 | |a Varlı, Muhammet |e verfasserin |0 (orcid)0000-0003-3902-4504 |4 aut | |
245 | 1 | 0 | |a Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. | ||
650 | 4 | |a Epilepsy | |
650 | 4 | |a Convolutional Neural Network | |
650 | 4 | |a Recurrent Neural Network | |
650 | 4 | |a Combined deep learning | |
650 | 4 | |a Epileptic seizure diagnosis | |
700 | 1 | |a Yılmaz, Hakan |e verfasserin |0 (orcid)0000-0002-8553-388X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational science |d Amsterdam [u.a.] : Elsevier, 2010 |g 67 |h Online-Ressource |w (DE-627)627614825 |w (DE-600)2557360-3 |w (DE-576)324400225 |x 1877-7503 |7 nnns |
773 | 1 | 8 | |g volume:67 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 67 |
author_variant |
m v mv h y hy |
---|---|
matchkey_str |
article:18777503:2023----::utpelsiiainfesgasneietcezrdanss |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.jocs.2023.101943 doi (DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 DE-627 ger DE-627 rda eng 004 DE-600 Varlı, Muhammet verfasserin (orcid)0000-0003-3902-4504 aut Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis Yılmaz, Hakan verfasserin (orcid)0000-0002-8553-388X aut Enthalten in Journal of computational science Amsterdam [u.a.] : Elsevier, 2010 67 Online-Ressource (DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 1877-7503 nnns volume:67 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 |
spelling |
10.1016/j.jocs.2023.101943 doi (DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 DE-627 ger DE-627 rda eng 004 DE-600 Varlı, Muhammet verfasserin (orcid)0000-0003-3902-4504 aut Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis Yılmaz, Hakan verfasserin (orcid)0000-0002-8553-388X aut Enthalten in Journal of computational science Amsterdam [u.a.] : Elsevier, 2010 67 Online-Ressource (DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 1877-7503 nnns volume:67 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 |
allfields_unstemmed |
10.1016/j.jocs.2023.101943 doi (DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 DE-627 ger DE-627 rda eng 004 DE-600 Varlı, Muhammet verfasserin (orcid)0000-0003-3902-4504 aut Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis Yılmaz, Hakan verfasserin (orcid)0000-0002-8553-388X aut Enthalten in Journal of computational science Amsterdam [u.a.] : Elsevier, 2010 67 Online-Ressource (DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 1877-7503 nnns volume:67 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 |
allfieldsGer |
10.1016/j.jocs.2023.101943 doi (DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 DE-627 ger DE-627 rda eng 004 DE-600 Varlı, Muhammet verfasserin (orcid)0000-0003-3902-4504 aut Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis Yılmaz, Hakan verfasserin (orcid)0000-0002-8553-388X aut Enthalten in Journal of computational science Amsterdam [u.a.] : Elsevier, 2010 67 Online-Ressource (DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 1877-7503 nnns volume:67 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 |
allfieldsSound |
10.1016/j.jocs.2023.101943 doi (DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 DE-627 ger DE-627 rda eng 004 DE-600 Varlı, Muhammet verfasserin (orcid)0000-0003-3902-4504 aut Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis Yılmaz, Hakan verfasserin (orcid)0000-0002-8553-388X aut Enthalten in Journal of computational science Amsterdam [u.a.] : Elsevier, 2010 67 Online-Ressource (DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 1877-7503 nnns volume:67 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 |
language |
English |
source |
Enthalten in Journal of computational science 67 volume:67 |
sourceStr |
Enthalten in Journal of computational science 67 volume:67 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of computational science |
authorswithroles_txt_mv |
Varlı, Muhammet @@aut@@ Yılmaz, Hakan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
627614825 |
dewey-sort |
14 |
id |
ELV009375287 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009375287</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jocs.2023.101943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009375287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1877-7503(23)00003-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varlı, Muhammet</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3902-4504</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epilepsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrent Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epileptic seizure diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yılmaz, Hakan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8553-388X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2010</subfield><subfield code="g">67</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)627614825</subfield><subfield code="w">(DE-600)2557360-3</subfield><subfield code="w">(DE-576)324400225</subfield><subfield code="x">1877-7503</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield></datafield></record></collection>
|
author |
Varlı, Muhammet |
spellingShingle |
Varlı, Muhammet ddc 004 misc Epilepsy misc Convolutional Neural Network misc Recurrent Neural Network misc Combined deep learning misc Epileptic seizure diagnosis Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
authorStr |
Varlı, Muhammet |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)627614825 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1877-7503 |
topic_title |
004 DE-600 Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning Epilepsy Convolutional Neural Network Recurrent Neural Network Combined deep learning Epileptic seizure diagnosis |
topic |
ddc 004 misc Epilepsy misc Convolutional Neural Network misc Recurrent Neural Network misc Combined deep learning misc Epileptic seizure diagnosis |
topic_unstemmed |
ddc 004 misc Epilepsy misc Convolutional Neural Network misc Recurrent Neural Network misc Combined deep learning misc Epileptic seizure diagnosis |
topic_browse |
ddc 004 misc Epilepsy misc Convolutional Neural Network misc Recurrent Neural Network misc Combined deep learning misc Epileptic seizure diagnosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of computational science |
hierarchy_parent_id |
627614825 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of computational science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)627614825 (DE-600)2557360-3 (DE-576)324400225 |
title |
Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
ctrlnum |
(DE-627)ELV009375287 (ELSEVIER)S1877-7503(23)00003-0 |
title_full |
Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
author_sort |
Varlı, Muhammet |
journal |
Journal of computational science |
journalStr |
Journal of computational science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Varlı, Muhammet Yılmaz, Hakan |
container_volume |
67 |
class |
004 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Varlı, Muhammet |
doi_str_mv |
10.1016/j.jocs.2023.101943 |
normlink |
(ORCID)0000-0003-3902-4504 (ORCID)0000-0002-8553-388X |
normlink_prefix_str_mv |
(orcid)0000-0003-3902-4504 (orcid)0000-0002-8553-388X |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
multiple classification of eeg signals and epileptic seizure diagnosis with combined deep learning |
title_auth |
Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
abstract |
Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. |
abstractGer |
Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. |
abstract_unstemmed |
Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning |
remote_bool |
true |
author2 |
Yılmaz, Hakan |
author2Str |
Yılmaz, Hakan |
ppnlink |
627614825 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jocs.2023.101943 |
up_date |
2024-07-06T22:56:30.542Z |
_version_ |
1803872203486265344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009375287</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122131.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jocs.2023.101943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009375287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1877-7503(23)00003-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varlı, Muhammet</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3902-4504</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epilepsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrent Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epileptic seizure diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yılmaz, Hakan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8553-388X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2010</subfield><subfield code="g">67</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)627614825</subfield><subfield code="w">(DE-600)2557360-3</subfield><subfield code="w">(DE-576)324400225</subfield><subfield code="x">1877-7503</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield></datafield></record></collection>
|
score |
7.4009666 |