Capillary evaporating film model for a screen-wick heat pipe
Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a cap...
Ausführliche Beschreibung
Autor*in: |
Ma, Yugao [verfasserIn] Zhang, Yingnan [verfasserIn] Yu, Hongxing [verfasserIn] Su, G.H. [verfasserIn] Huang, Shanfang [verfasserIn] Deng, Jian [verfasserIn] Chai, Xiaoming [verfasserIn] He, Xiaoqiang [verfasserIn] Zhang, Zhuohua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 225 |
---|---|
Übergeordnetes Werk: |
volume:225 |
DOI / URN: |
10.1016/j.applthermaleng.2023.120155 |
---|
Katalog-ID: |
ELV009421998 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009421998 | ||
003 | DE-627 | ||
005 | 20231104093021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2023.120155 |2 doi | |
035 | |a (DE-627)ELV009421998 | ||
035 | |a (ELSEVIER)S1359-4311(23)00184-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Ma, Yugao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Capillary evaporating film model for a screen-wick heat pipe |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. | ||
650 | 4 | |a Wick heat pipes | |
650 | 4 | |a Evaporation | |
650 | 4 | |a Capillary evaporating film model | |
700 | 1 | |a Zhang, Yingnan |e verfasserin |4 aut | |
700 | 1 | |a Yu, Hongxing |e verfasserin |4 aut | |
700 | 1 | |a Su, G.H. |e verfasserin |4 aut | |
700 | 1 | |a Huang, Shanfang |e verfasserin |4 aut | |
700 | 1 | |a Deng, Jian |e verfasserin |4 aut | |
700 | 1 | |a Chai, Xiaoming |e verfasserin |4 aut | |
700 | 1 | |a He, Xiaoqiang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Zhuohua |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 225 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:225 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 225 |
author_variant |
y m ym y z yz h y hy g s gs s h sh j d jd x c xc x h xh z z zz |
---|---|
matchkey_str |
article:13594311:2023----::ailreaoaigimoefrsr |
hierarchy_sort_str |
2023 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2023 |
allfields |
10.1016/j.applthermaleng.2023.120155 doi (DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yugao verfasserin aut Capillary evaporating film model for a screen-wick heat pipe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. Wick heat pipes Evaporation Capillary evaporating film model Zhang, Yingnan verfasserin aut Yu, Hongxing verfasserin aut Su, G.H. verfasserin aut Huang, Shanfang verfasserin aut Deng, Jian verfasserin aut Chai, Xiaoming verfasserin aut He, Xiaoqiang verfasserin aut Zhang, Zhuohua verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 225 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:225 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 225 |
spelling |
10.1016/j.applthermaleng.2023.120155 doi (DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yugao verfasserin aut Capillary evaporating film model for a screen-wick heat pipe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. Wick heat pipes Evaporation Capillary evaporating film model Zhang, Yingnan verfasserin aut Yu, Hongxing verfasserin aut Su, G.H. verfasserin aut Huang, Shanfang verfasserin aut Deng, Jian verfasserin aut Chai, Xiaoming verfasserin aut He, Xiaoqiang verfasserin aut Zhang, Zhuohua verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 225 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:225 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 225 |
allfields_unstemmed |
10.1016/j.applthermaleng.2023.120155 doi (DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yugao verfasserin aut Capillary evaporating film model for a screen-wick heat pipe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. Wick heat pipes Evaporation Capillary evaporating film model Zhang, Yingnan verfasserin aut Yu, Hongxing verfasserin aut Su, G.H. verfasserin aut Huang, Shanfang verfasserin aut Deng, Jian verfasserin aut Chai, Xiaoming verfasserin aut He, Xiaoqiang verfasserin aut Zhang, Zhuohua verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 225 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:225 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 225 |
allfieldsGer |
10.1016/j.applthermaleng.2023.120155 doi (DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yugao verfasserin aut Capillary evaporating film model for a screen-wick heat pipe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. Wick heat pipes Evaporation Capillary evaporating film model Zhang, Yingnan verfasserin aut Yu, Hongxing verfasserin aut Su, G.H. verfasserin aut Huang, Shanfang verfasserin aut Deng, Jian verfasserin aut Chai, Xiaoming verfasserin aut He, Xiaoqiang verfasserin aut Zhang, Zhuohua verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 225 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:225 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 225 |
allfieldsSound |
10.1016/j.applthermaleng.2023.120155 doi (DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yugao verfasserin aut Capillary evaporating film model for a screen-wick heat pipe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. Wick heat pipes Evaporation Capillary evaporating film model Zhang, Yingnan verfasserin aut Yu, Hongxing verfasserin aut Su, G.H. verfasserin aut Huang, Shanfang verfasserin aut Deng, Jian verfasserin aut Chai, Xiaoming verfasserin aut He, Xiaoqiang verfasserin aut Zhang, Zhuohua verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 225 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:225 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 225 |
language |
English |
source |
Enthalten in Applied thermal engineering 225 volume:225 |
sourceStr |
Enthalten in Applied thermal engineering 225 volume:225 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Wick heat pipes Evaporation Capillary evaporating film model |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Ma, Yugao @@aut@@ Zhang, Yingnan @@aut@@ Yu, Hongxing @@aut@@ Su, G.H. @@aut@@ Huang, Shanfang @@aut@@ Deng, Jian @@aut@@ Chai, Xiaoming @@aut@@ He, Xiaoqiang @@aut@@ Zhang, Zhuohua @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV009421998 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009421998</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231104093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.120155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009421998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)00184-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yugao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capillary evaporating film model for a screen-wick heat pipe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wick heat pipes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capillary evaporating film model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yingnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hongxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhuohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">225</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield></datafield></record></collection>
|
author |
Ma, Yugao |
spellingShingle |
Ma, Yugao ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Wick heat pipes misc Evaporation misc Capillary evaporating film model Capillary evaporating film model for a screen-wick heat pipe |
authorStr |
Ma, Yugao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Capillary evaporating film model for a screen-wick heat pipe Wick heat pipes Evaporation Capillary evaporating film model |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Wick heat pipes misc Evaporation misc Capillary evaporating film model |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Wick heat pipes misc Evaporation misc Capillary evaporating film model |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Wick heat pipes misc Evaporation misc Capillary evaporating film model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
Capillary evaporating film model for a screen-wick heat pipe |
ctrlnum |
(DE-627)ELV009421998 (ELSEVIER)S1359-4311(23)00184-9 |
title_full |
Capillary evaporating film model for a screen-wick heat pipe |
author_sort |
Ma, Yugao |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Ma, Yugao Zhang, Yingnan Yu, Hongxing Su, G.H. Huang, Shanfang Deng, Jian Chai, Xiaoming He, Xiaoqiang Zhang, Zhuohua |
container_volume |
225 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Yugao |
doi_str_mv |
10.1016/j.applthermaleng.2023.120155 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
capillary evaporating film model for a screen-wick heat pipe |
title_auth |
Capillary evaporating film model for a screen-wick heat pipe |
abstract |
Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. |
abstractGer |
Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. |
abstract_unstemmed |
Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Capillary evaporating film model for a screen-wick heat pipe |
remote_bool |
true |
author2 |
Zhang, Yingnan Yu, Hongxing Su, G.H. Huang, Shanfang Deng, Jian Chai, Xiaoming He, Xiaoqiang Zhang, Zhuohua |
author2Str |
Zhang, Yingnan Yu, Hongxing Su, G.H. Huang, Shanfang Deng, Jian Chai, Xiaoming He, Xiaoqiang Zhang, Zhuohua |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2023.120155 |
up_date |
2024-07-06T23:06:09.637Z |
_version_ |
1803872810711384064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009421998</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231104093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.120155</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009421998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)00184-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yugao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capillary evaporating film model for a screen-wick heat pipe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Screen-wick heat pipes are efficient passive heat transfer devices. The heat transfer capacity is determined by the capillary pressure, which is related to the film curvature inside the screen wick. A capillary evaporating film model was developed for the screen wick that divided the film into a capillary pressure microlayer region and a macroscopic film. The film surface shape in the capillary pressure microlayer region is mainly influenced by the long-range molecular forces (disjoining pressure) and the surface tension, while the film surface shape in the macroscopic film is affected by the wick geometry. The numerical results show that the present model more accurately predicts the three-dimensional characteristics of the liquid film inside the screen wick than the classical model. The wire opening distance and the wire diameter affect the capillary pressure and the flow path in the wick. As the liquid film recedes into the wick, the capillary force first increases and then decreases. The film dynamics in the wick are related to the liquid height, which automatically adapts to the required evaporation and pressure balance for a given heat load. High operating temperatures can lead to a mismatch between the capillary head and the pressure loss, leading to dryout in the wick. Thus, this work provides a reference for operating alkali-metal wick heat pipes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wick heat pipes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capillary evaporating film model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yingnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hongxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhuohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">225</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield></datafield></record></collection>
|
score |
7.4006233 |