The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy
We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell fun...
Ausführliche Beschreibung
Autor*in: |
Mortenson, Eric T. [verfasserIn] Zwegers, Sander [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in mathematics - Amsterdam [u.a.] : Elsevier, 1961, 418 |
---|---|
Übergeordnetes Werk: |
volume:418 |
DOI / URN: |
10.1016/j.aim.2023.108944 |
---|
Katalog-ID: |
ELV009428801 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009428801 | ||
003 | DE-627 | ||
005 | 20230524160430.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aim.2023.108944 |2 doi | |
035 | |a (DE-627)ELV009428801 | ||
035 | |a (ELSEVIER)S0001-8708(23)00087-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Mortenson, Eric T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. | ||
650 | 4 | |a Appell functions | |
650 | 4 | |a Theta functions | |
650 | 4 | |a Indefinite theta series | |
650 | 4 | |a Hecke-type double-sums | |
650 | 4 | |a Mock modular forms | |
650 | 4 | |a Quantum modular forms | |
700 | 1 | |a Zwegers, Sander |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 418 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnns |
773 | 1 | 8 | |g volume:418 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 418 |
author_variant |
e t m et etm s z sz |
---|---|
matchkey_str |
article:10902082:2023----::hmxdokouaiyfetidasfeeaieqatmoua |
hierarchy_sort_str |
2023 |
bklnumber |
31.00 |
publishDate |
2023 |
allfields |
10.1016/j.aim.2023.108944 doi (DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Mortenson, Eric T. verfasserin aut The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms Zwegers, Sander verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 418 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:418 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 418 |
spelling |
10.1016/j.aim.2023.108944 doi (DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Mortenson, Eric T. verfasserin aut The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms Zwegers, Sander verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 418 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:418 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 418 |
allfields_unstemmed |
10.1016/j.aim.2023.108944 doi (DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Mortenson, Eric T. verfasserin aut The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms Zwegers, Sander verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 418 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:418 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 418 |
allfieldsGer |
10.1016/j.aim.2023.108944 doi (DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Mortenson, Eric T. verfasserin aut The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms Zwegers, Sander verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 418 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:418 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 418 |
allfieldsSound |
10.1016/j.aim.2023.108944 doi (DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Mortenson, Eric T. verfasserin aut The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms Zwegers, Sander verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 418 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:418 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 418 |
language |
English |
source |
Enthalten in Advances in mathematics 418 volume:418 |
sourceStr |
Enthalten in Advances in mathematics 418 volume:418 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Advances in mathematics |
authorswithroles_txt_mv |
Mortenson, Eric T. @@aut@@ Zwegers, Sander @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
268759200 |
dewey-sort |
3510 |
id |
ELV009428801 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009428801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2023.108944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009428801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(23)00087-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mortenson, Eric T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appell functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indefinite theta series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke-type double-sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mock modular forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum modular forms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zwegers, Sander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1961</subfield><subfield code="g">418</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268759200</subfield><subfield code="w">(DE-600)1472893-X</subfield><subfield code="w">(DE-576)103373292</subfield><subfield code="x">1090-2082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:418</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">418</subfield></datafield></record></collection>
|
author |
Mortenson, Eric T. |
spellingShingle |
Mortenson, Eric T. ddc 510 bkl 31.00 misc Appell functions misc Theta functions misc Indefinite theta series misc Hecke-type double-sums misc Mock modular forms misc Quantum modular forms The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
authorStr |
Mortenson, Eric T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268759200 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1090-2082 |
topic_title |
510 DE-600 31.00 bkl The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy Appell functions Theta functions Indefinite theta series Hecke-type double-sums Mock modular forms Quantum modular forms |
topic |
ddc 510 bkl 31.00 misc Appell functions misc Theta functions misc Indefinite theta series misc Hecke-type double-sums misc Mock modular forms misc Quantum modular forms |
topic_unstemmed |
ddc 510 bkl 31.00 misc Appell functions misc Theta functions misc Indefinite theta series misc Hecke-type double-sums misc Mock modular forms misc Quantum modular forms |
topic_browse |
ddc 510 bkl 31.00 misc Appell functions misc Theta functions misc Indefinite theta series misc Hecke-type double-sums misc Mock modular forms misc Quantum modular forms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in mathematics |
hierarchy_parent_id |
268759200 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Advances in mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 |
title |
The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
ctrlnum |
(DE-627)ELV009428801 (ELSEVIER)S0001-8708(23)00087-7 |
title_full |
The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
author_sort |
Mortenson, Eric T. |
journal |
Advances in mathematics |
journalStr |
Advances in mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Mortenson, Eric T. Zwegers, Sander |
container_volume |
418 |
class |
510 DE-600 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mortenson, Eric T. |
doi_str_mv |
10.1016/j.aim.2023.108944 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
the mixed mock modularity of certain duals of generalized quantum modular forms of hikami and lovejoy |
title_auth |
The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
abstract |
We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. |
abstractGer |
We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. |
abstract_unstemmed |
We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy |
remote_bool |
true |
author2 |
Zwegers, Sander |
author2Str |
Zwegers, Sander |
ppnlink |
268759200 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aim.2023.108944 |
up_date |
2024-07-06T23:07:36.460Z |
_version_ |
1803872901751898112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009428801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2023.108944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009428801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(23)00087-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mortenson, Eric T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We resolve a question of Hikami and Lovejoy that sits at the intersection of quantum modular forms, mock modular forms, and knot theory. We express a family of Hecke–Appell-type sums of Hikami and Lovejoy in terms of mixed mock modular forms; in particular, we express the sums in terms of Appell functions and theta functions. They obtained their family of Hecke–Appell-type sums by considering certain duals of generalized quantum modular forms, where the quantum modular forms are motivated by the colored Jones polynomial for special torus knots.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appell functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indefinite theta series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke-type double-sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mock modular forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum modular forms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zwegers, Sander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1961</subfield><subfield code="g">418</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268759200</subfield><subfield code="w">(DE-600)1472893-X</subfield><subfield code="w">(DE-576)103373292</subfield><subfield code="x">1090-2082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:418</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">418</subfield></datafield></record></collection>
|
score |
7.40226 |