Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron
A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the ma...
Ausführliche Beschreibung
Autor*in: |
Yang, Ye [verfasserIn] Matsuba, Shunya [verfasserIn] Mizushima, Kota [verfasserIn] Fujimoto, Tetsuya [verfasserIn] Iwata, Yoshiyuki [verfasserIn] Noda, Etsuo [verfasserIn] Urata, Masami [verfasserIn] Shirai, Toshiyuki [verfasserIn] Nishijima, Gen [verfasserIn] Takayama, Shigeki [verfasserIn] Amano, Saki [verfasserIn] Maeto, Tomoaki [verfasserIn] Orikasa, Tomofumi [verfasserIn] Nakanishi, Kosuke [verfasserIn] Hirata, Yutaka [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear instruments & methods in physics research / A - Amsterdam : North-Holland Publ. Co., 1984, 1050 |
---|---|
Übergeordnetes Werk: |
volume:1050 |
DOI / URN: |
10.1016/j.nima.2023.168165 |
---|
Katalog-ID: |
ELV009454977 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009454977 | ||
003 | DE-627 | ||
005 | 20230930073216.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2023.168165 |2 doi | |
035 | |a (DE-627)ELV009454977 | ||
035 | |a (ELSEVIER)S0168-9002(23)00155-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.05 |2 bkl | ||
084 | |a 33.07 |2 bkl | ||
084 | |a 33.40 |2 bkl | ||
100 | 1 | |a Yang, Ye |e verfasserin |0 (orcid)0000-0001-6845-9297 |4 aut | |
245 | 1 | 0 | |a Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. | ||
650 | 4 | |a AC loss | |
650 | 4 | |a Accelerator magnets | |
650 | 4 | |a Conduction-cooling | |
650 | 4 | |a Heavy-ion synchrotron | |
650 | 4 | |a Heavy-ion therapy | |
650 | 4 | |a Superconducting combined function magnet | |
700 | 1 | |a Matsuba, Shunya |e verfasserin |4 aut | |
700 | 1 | |a Mizushima, Kota |e verfasserin |4 aut | |
700 | 1 | |a Fujimoto, Tetsuya |e verfasserin |4 aut | |
700 | 1 | |a Iwata, Yoshiyuki |e verfasserin |4 aut | |
700 | 1 | |a Noda, Etsuo |e verfasserin |4 aut | |
700 | 1 | |a Urata, Masami |e verfasserin |4 aut | |
700 | 1 | |a Shirai, Toshiyuki |e verfasserin |4 aut | |
700 | 1 | |a Nishijima, Gen |e verfasserin |4 aut | |
700 | 1 | |a Takayama, Shigeki |e verfasserin |4 aut | |
700 | 1 | |a Amano, Saki |e verfasserin |4 aut | |
700 | 1 | |a Maeto, Tomoaki |e verfasserin |4 aut | |
700 | 1 | |a Orikasa, Tomofumi |e verfasserin |4 aut | |
700 | 1 | |a Nakanishi, Kosuke |e verfasserin |4 aut | |
700 | 1 | |a Hirata, Yutaka |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear instruments & methods in physics research / A |d Amsterdam : North-Holland Publ. Co., 1984 |g 1050 |h Online-Ressource |w (DE-627)266014666 |w (DE-600)1466532-3 |w (DE-576)074959743 |x 0168-9002 |7 nnns |
773 | 1 | 8 | |g volume:1050 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.05 |j Experimentalphysik |q VZ |
936 | b | k | |a 33.07 |j Spektroskopie |q VZ |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
951 | |a AR | ||
952 | |d 1050 |
author_variant |
y y yy s m sm k m km t f tf y i yi e n en m u mu t s ts g n gn s t st s a sa t m tm t o to k n kn y h yh |
---|---|
matchkey_str |
article:01689002:2023----::einntsoa4lnsotoeoaodcinolduecnutncmiefntomgefrcm |
hierarchy_sort_str |
2023 |
bklnumber |
33.05 33.07 33.40 |
publishDate |
2023 |
allfields |
10.1016/j.nima.2023.168165 doi (DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Yang, Ye verfasserin (orcid)0000-0001-6845-9297 aut Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet Matsuba, Shunya verfasserin aut Mizushima, Kota verfasserin aut Fujimoto, Tetsuya verfasserin aut Iwata, Yoshiyuki verfasserin aut Noda, Etsuo verfasserin aut Urata, Masami verfasserin aut Shirai, Toshiyuki verfasserin aut Nishijima, Gen verfasserin aut Takayama, Shigeki verfasserin aut Amano, Saki verfasserin aut Maeto, Tomoaki verfasserin aut Orikasa, Tomofumi verfasserin aut Nakanishi, Kosuke verfasserin aut Hirata, Yutaka verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1050 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1050 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1050 |
spelling |
10.1016/j.nima.2023.168165 doi (DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Yang, Ye verfasserin (orcid)0000-0001-6845-9297 aut Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet Matsuba, Shunya verfasserin aut Mizushima, Kota verfasserin aut Fujimoto, Tetsuya verfasserin aut Iwata, Yoshiyuki verfasserin aut Noda, Etsuo verfasserin aut Urata, Masami verfasserin aut Shirai, Toshiyuki verfasserin aut Nishijima, Gen verfasserin aut Takayama, Shigeki verfasserin aut Amano, Saki verfasserin aut Maeto, Tomoaki verfasserin aut Orikasa, Tomofumi verfasserin aut Nakanishi, Kosuke verfasserin aut Hirata, Yutaka verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1050 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1050 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1050 |
allfields_unstemmed |
10.1016/j.nima.2023.168165 doi (DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Yang, Ye verfasserin (orcid)0000-0001-6845-9297 aut Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet Matsuba, Shunya verfasserin aut Mizushima, Kota verfasserin aut Fujimoto, Tetsuya verfasserin aut Iwata, Yoshiyuki verfasserin aut Noda, Etsuo verfasserin aut Urata, Masami verfasserin aut Shirai, Toshiyuki verfasserin aut Nishijima, Gen verfasserin aut Takayama, Shigeki verfasserin aut Amano, Saki verfasserin aut Maeto, Tomoaki verfasserin aut Orikasa, Tomofumi verfasserin aut Nakanishi, Kosuke verfasserin aut Hirata, Yutaka verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1050 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1050 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1050 |
allfieldsGer |
10.1016/j.nima.2023.168165 doi (DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Yang, Ye verfasserin (orcid)0000-0001-6845-9297 aut Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet Matsuba, Shunya verfasserin aut Mizushima, Kota verfasserin aut Fujimoto, Tetsuya verfasserin aut Iwata, Yoshiyuki verfasserin aut Noda, Etsuo verfasserin aut Urata, Masami verfasserin aut Shirai, Toshiyuki verfasserin aut Nishijima, Gen verfasserin aut Takayama, Shigeki verfasserin aut Amano, Saki verfasserin aut Maeto, Tomoaki verfasserin aut Orikasa, Tomofumi verfasserin aut Nakanishi, Kosuke verfasserin aut Hirata, Yutaka verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1050 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1050 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1050 |
allfieldsSound |
10.1016/j.nima.2023.168165 doi (DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 DE-627 ger DE-627 rda eng 530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Yang, Ye verfasserin (orcid)0000-0001-6845-9297 aut Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet Matsuba, Shunya verfasserin aut Mizushima, Kota verfasserin aut Fujimoto, Tetsuya verfasserin aut Iwata, Yoshiyuki verfasserin aut Noda, Etsuo verfasserin aut Urata, Masami verfasserin aut Shirai, Toshiyuki verfasserin aut Nishijima, Gen verfasserin aut Takayama, Shigeki verfasserin aut Amano, Saki verfasserin aut Maeto, Tomoaki verfasserin aut Orikasa, Tomofumi verfasserin aut Nakanishi, Kosuke verfasserin aut Hirata, Yutaka verfasserin aut Enthalten in Nuclear instruments & methods in physics research / A Amsterdam : North-Holland Publ. Co., 1984 1050 Online-Ressource (DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 0168-9002 nnns volume:1050 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.05 Experimentalphysik VZ 33.07 Spektroskopie VZ 33.40 Kernphysik VZ AR 1050 |
language |
English |
source |
Enthalten in Nuclear instruments & methods in physics research / A 1050 volume:1050 |
sourceStr |
Enthalten in Nuclear instruments & methods in physics research / A 1050 volume:1050 |
format_phy_str_mv |
Article |
bklname |
Experimentalphysik Spektroskopie Kernphysik |
institution |
findex.gbv.de |
topic_facet |
AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nuclear instruments & methods in physics research / A |
authorswithroles_txt_mv |
Yang, Ye @@aut@@ Matsuba, Shunya @@aut@@ Mizushima, Kota @@aut@@ Fujimoto, Tetsuya @@aut@@ Iwata, Yoshiyuki @@aut@@ Noda, Etsuo @@aut@@ Urata, Masami @@aut@@ Shirai, Toshiyuki @@aut@@ Nishijima, Gen @@aut@@ Takayama, Shigeki @@aut@@ Amano, Saki @@aut@@ Maeto, Tomoaki @@aut@@ Orikasa, Tomofumi @@aut@@ Nakanishi, Kosuke @@aut@@ Hirata, Yutaka @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
266014666 |
dewey-sort |
3530 |
id |
ELV009454977 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009454977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230930073216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2023.168165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009454977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(23)00155-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6845-9297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conduction-cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion synchrotron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting combined function magnet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuba, Shunya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizushima, Kota</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujimoto, Tetsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Etsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urata, Masami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirai, Toshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishijima, Gen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takayama, Shigeki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amano, Saki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maeto, Tomoaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orikasa, Tomofumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakanishi, Kosuke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirata, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / A</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1984</subfield><subfield code="g">1050</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014666</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="w">(DE-576)074959743</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1050</subfield></datafield></record></collection>
|
author |
Yang, Ye |
spellingShingle |
Yang, Ye ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc AC loss misc Accelerator magnets misc Conduction-cooling misc Heavy-ion synchrotron misc Heavy-ion therapy misc Superconducting combined function magnet Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
authorStr |
Yang, Ye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266014666 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0168-9002 |
topic_title |
530 VZ 33.05 bkl 33.07 bkl 33.40 bkl Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron AC loss Accelerator magnets Conduction-cooling Heavy-ion synchrotron Heavy-ion therapy Superconducting combined function magnet |
topic |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc AC loss misc Accelerator magnets misc Conduction-cooling misc Heavy-ion synchrotron misc Heavy-ion therapy misc Superconducting combined function magnet |
topic_unstemmed |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc AC loss misc Accelerator magnets misc Conduction-cooling misc Heavy-ion synchrotron misc Heavy-ion therapy misc Superconducting combined function magnet |
topic_browse |
ddc 530 bkl 33.05 bkl 33.07 bkl 33.40 misc AC loss misc Accelerator magnets misc Conduction-cooling misc Heavy-ion synchrotron misc Heavy-ion therapy misc Superconducting combined function magnet |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear instruments & methods in physics research / A |
hierarchy_parent_id |
266014666 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nuclear instruments & methods in physics research / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266014666 (DE-600)1466532-3 (DE-576)074959743 |
title |
Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
ctrlnum |
(DE-627)ELV009454977 (ELSEVIER)S0168-9002(23)00155-9 |
title_full |
Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
author_sort |
Yang, Ye |
journal |
Nuclear instruments & methods in physics research / A |
journalStr |
Nuclear instruments & methods in physics research / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yang, Ye Matsuba, Shunya Mizushima, Kota Fujimoto, Tetsuya Iwata, Yoshiyuki Noda, Etsuo Urata, Masami Shirai, Toshiyuki Nishijima, Gen Takayama, Shigeki Amano, Saki Maeto, Tomoaki Orikasa, Tomofumi Nakanishi, Kosuke Hirata, Yutaka |
container_volume |
1050 |
class |
530 VZ 33.05 bkl 33.07 bkl 33.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Ye |
doi_str_mv |
10.1016/j.nima.2023.168165 |
normlink |
(ORCID)0000-0001-6845-9297 |
normlink_prefix_str_mv |
(orcid)0000-0001-6845-9297 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
title_auth |
Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
abstract |
A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. |
abstractGer |
A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. |
abstract_unstemmed |
A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron |
remote_bool |
true |
author2 |
Matsuba, Shunya Mizushima, Kota Fujimoto, Tetsuya Iwata, Yoshiyuki Noda, Etsuo Urata, Masami Shirai, Toshiyuki Nishijima, Gen Takayama, Shigeki Amano, Saki Maeto, Tomoaki Orikasa, Tomofumi Nakanishi, Kosuke Hirata, Yutaka |
author2Str |
Matsuba, Shunya Mizushima, Kota Fujimoto, Tetsuya Iwata, Yoshiyuki Noda, Etsuo Urata, Masami Shirai, Toshiyuki Nishijima, Gen Takayama, Shigeki Amano, Saki Maeto, Tomoaki Orikasa, Tomofumi Nakanishi, Kosuke Hirata, Yutaka |
ppnlink |
266014666 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nima.2023.168165 |
up_date |
2024-07-06T23:13:06.594Z |
_version_ |
1803873247923535872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009454977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230930073216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2023.168165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009454977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(23)00155-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6845-9297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and test of a 0.4-m long short model of a conduction-cooled superconducting combined function magnet for a compact, rapid-cycling heavy-ion synchrotron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A project developing a compact, rapid-cycling heavy-ion synchrotron that can be accommodated in an ordinary hospital building has been initiated in the National Institutes for Quantum Science and Technology (QST). One of the most effective ways to achieve the compact synchrotron is to enhance the magnetic field by replacing normal conducting magnets with superconducting magnets. Thus, a concept design of a superconducting bending magnet (SCBM) equipped with a main dipole coil and an additional quadrupole coil has been proposed to provide the field of 3.5 T and the field gradient of 1.5 T/m for this advanced heavy-ion synchrotron. The SCBM requires cyclic operation at a ramp rate of 0.64 T/s, and a “dry” system in which the magnet is conduction-cooled from the Gifford-McMahon (GM) cryocoolers via the high conductivity thermal path to facilitate the SCBM use. It is a non-trivial problem that the AC loss generated at such a ramp rate results in a huge temperature rise during the cyclic operation. To validate the thermal characteristics as well as the feasibility of the magnet fabrication, in this paper we develop a 0.4-m long straight short model of the SCBM. The short model is enclosed in a cryostat and conduction-cooled with two GM cryocoolers via pure aluminum thermal paths. The nominal field of 3.5 T and the nominal field gradient of 1.5 T/m are reached after a total of 39 training quenches. We measure the central magnetic field and field gradient with five cryogenic hall sensors at the cryogenic temperature. After that, we operate this short model at the maximum ramp rate of 0.7 T/s with only one-cryocooler operation until the system reaches the quasi-static state to test the thermal stability and measure the AC loss by using the cooling capacity of the GM cryocooler. The paper describes the design and the test results of the short model including the magnetic field measurement, the AC loss measurement and the quench behavior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conduction-cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion synchrotron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting combined function magnet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuba, Shunya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizushima, Kota</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujimoto, Tetsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Etsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urata, Masami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirai, Toshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishijima, Gen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takayama, Shigeki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amano, Saki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maeto, Tomoaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orikasa, Tomofumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakanishi, Kosuke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirata, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / A</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1984</subfield><subfield code="g">1050</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014666</subfield><subfield code="w">(DE-600)1466532-3</subfield><subfield code="w">(DE-576)074959743</subfield><subfield code="x">0168-9002</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.07</subfield><subfield code="j">Spektroskopie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1050</subfield></datafield></record></collection>
|
score |
7.399907 |