Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species
Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during free...
Ausführliche Beschreibung
Autor*in: |
Li, Zhimin [verfasserIn] Wang, Chuankuan [verfasserIn] Luo, Dandan [verfasserIn] Hou, Enqing [verfasserIn] Ibrahim, Muhammed Mustapha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Plant physiology and biochemistry - Amsterdam [u.a.] : Elsevier Science, 1998, 197 |
---|---|
Übergeordnetes Werk: |
volume:197 |
DOI / URN: |
10.1016/j.plaphy.2023.107658 |
---|
Katalog-ID: |
ELV009502408 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009502408 | ||
003 | DE-627 | ||
005 | 20230524164009.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.plaphy.2023.107658 |2 doi | |
035 | |a (DE-627)ELV009502408 | ||
035 | |a (ELSEVIER)S0981-9428(23)00162-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 580 |q DE-600 |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Li, Zhimin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. | ||
650 | 4 | |a Hydraulic segmentation | |
650 | 4 | |a Vulnerability segmentation | |
650 | 4 | |a Winter | |
650 | 4 | |a Evergreen species | |
650 | 4 | |a Freeze-thaw cycle | |
700 | 1 | |a Wang, Chuankuan |e verfasserin |4 aut | |
700 | 1 | |a Luo, Dandan |e verfasserin |4 aut | |
700 | 1 | |a Hou, Enqing |e verfasserin |0 (orcid)0000-0003-4864-2347 |4 aut | |
700 | 1 | |a Ibrahim, Muhammed Mustapha |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Plant physiology and biochemistry |d Amsterdam [u.a.] : Elsevier Science, 1998 |g 197 |h Online-Ressource |w (DE-627)324869193 |w (DE-600)2031431-0 |w (DE-576)094080925 |x 1873-2690 |7 nnns |
773 | 1 | 8 | |g volume:197 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-BIODIV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.00 |j Biologie: Allgemeines |
951 | |a AR | ||
952 | |d 197 |
author_variant |
z l zl c w cw d l dl e h eh m m i mm mmi |
---|---|
matchkey_str |
article:18732690:2023----::efrnhunrbltsgettoocraleronfrhetme |
hierarchy_sort_str |
2023 |
bklnumber |
42.00 |
publishDate |
2023 |
allfields |
10.1016/j.plaphy.2023.107658 doi (DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 DE-627 ger DE-627 rda eng 630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Li, Zhimin verfasserin aut Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle Wang, Chuankuan verfasserin aut Luo, Dandan verfasserin aut Hou, Enqing verfasserin (orcid)0000-0003-4864-2347 aut Ibrahim, Muhammed Mustapha verfasserin aut Enthalten in Plant physiology and biochemistry Amsterdam [u.a.] : Elsevier Science, 1998 197 Online-Ressource (DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 1873-2690 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 Biologie: Allgemeines AR 197 |
spelling |
10.1016/j.plaphy.2023.107658 doi (DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 DE-627 ger DE-627 rda eng 630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Li, Zhimin verfasserin aut Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle Wang, Chuankuan verfasserin aut Luo, Dandan verfasserin aut Hou, Enqing verfasserin (orcid)0000-0003-4864-2347 aut Ibrahim, Muhammed Mustapha verfasserin aut Enthalten in Plant physiology and biochemistry Amsterdam [u.a.] : Elsevier Science, 1998 197 Online-Ressource (DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 1873-2690 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 Biologie: Allgemeines AR 197 |
allfields_unstemmed |
10.1016/j.plaphy.2023.107658 doi (DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 DE-627 ger DE-627 rda eng 630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Li, Zhimin verfasserin aut Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle Wang, Chuankuan verfasserin aut Luo, Dandan verfasserin aut Hou, Enqing verfasserin (orcid)0000-0003-4864-2347 aut Ibrahim, Muhammed Mustapha verfasserin aut Enthalten in Plant physiology and biochemistry Amsterdam [u.a.] : Elsevier Science, 1998 197 Online-Ressource (DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 1873-2690 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 Biologie: Allgemeines AR 197 |
allfieldsGer |
10.1016/j.plaphy.2023.107658 doi (DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 DE-627 ger DE-627 rda eng 630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Li, Zhimin verfasserin aut Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle Wang, Chuankuan verfasserin aut Luo, Dandan verfasserin aut Hou, Enqing verfasserin (orcid)0000-0003-4864-2347 aut Ibrahim, Muhammed Mustapha verfasserin aut Enthalten in Plant physiology and biochemistry Amsterdam [u.a.] : Elsevier Science, 1998 197 Online-Ressource (DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 1873-2690 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 Biologie: Allgemeines AR 197 |
allfieldsSound |
10.1016/j.plaphy.2023.107658 doi (DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 DE-627 ger DE-627 rda eng 630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Li, Zhimin verfasserin aut Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle Wang, Chuankuan verfasserin aut Luo, Dandan verfasserin aut Hou, Enqing verfasserin (orcid)0000-0003-4864-2347 aut Ibrahim, Muhammed Mustapha verfasserin aut Enthalten in Plant physiology and biochemistry Amsterdam [u.a.] : Elsevier Science, 1998 197 Online-Ressource (DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 1873-2690 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.00 Biologie: Allgemeines AR 197 |
language |
English |
source |
Enthalten in Plant physiology and biochemistry 197 volume:197 |
sourceStr |
Enthalten in Plant physiology and biochemistry 197 volume:197 |
format_phy_str_mv |
Article |
bklname |
Biologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Plant physiology and biochemistry |
authorswithroles_txt_mv |
Li, Zhimin @@aut@@ Wang, Chuankuan @@aut@@ Luo, Dandan @@aut@@ Hou, Enqing @@aut@@ Ibrahim, Muhammed Mustapha @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
324869193 |
dewey-sort |
3630 |
id |
ELV009502408 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009502408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plaphy.2023.107658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009502408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0981-9428(23)00162-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vulnerability segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Winter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evergreen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freeze-thaw cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chuankuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Dandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Enqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4864-2347</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ibrahim, Muhammed Mustapha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Plant physiology and biochemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1998</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324869193</subfield><subfield code="w">(DE-600)2031431-0</subfield><subfield code="w">(DE-576)094080925</subfield><subfield code="x">1873-2690</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
author |
Li, Zhimin |
spellingShingle |
Li, Zhimin ddc 630 fid BIODIV bkl 42.00 misc Hydraulic segmentation misc Vulnerability segmentation misc Winter misc Evergreen species misc Freeze-thaw cycle Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
authorStr |
Li, Zhimin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324869193 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2690 |
topic_title |
630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species Hydraulic segmentation Vulnerability segmentation Winter Evergreen species Freeze-thaw cycle |
topic |
ddc 630 fid BIODIV bkl 42.00 misc Hydraulic segmentation misc Vulnerability segmentation misc Winter misc Evergreen species misc Freeze-thaw cycle |
topic_unstemmed |
ddc 630 fid BIODIV bkl 42.00 misc Hydraulic segmentation misc Vulnerability segmentation misc Winter misc Evergreen species misc Freeze-thaw cycle |
topic_browse |
ddc 630 fid BIODIV bkl 42.00 misc Hydraulic segmentation misc Vulnerability segmentation misc Winter misc Evergreen species misc Freeze-thaw cycle |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plant physiology and biochemistry |
hierarchy_parent_id |
324869193 |
dewey-tens |
630 - Agriculture 640 - Home & family management 580 - Plants (Botany) |
hierarchy_top_title |
Plant physiology and biochemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)324869193 (DE-600)2031431-0 (DE-576)094080925 |
title |
Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
ctrlnum |
(DE-627)ELV009502408 (ELSEVIER)S0981-9428(23)00162-6 |
title_full |
Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
author_sort |
Li, Zhimin |
journal |
Plant physiology and biochemistry |
journalStr |
Plant physiology and biochemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Zhimin Wang, Chuankuan Luo, Dandan Hou, Enqing Ibrahim, Muhammed Mustapha |
container_volume |
197 |
class |
630 640 580 DE-600 BIODIV DE-30 fid 42.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Zhimin |
doi_str_mv |
10.1016/j.plaphy.2023.107658 |
normlink |
(ORCID)0000-0003-4864-2347 |
normlink_prefix_str_mv |
(orcid)0000-0003-4864-2347 |
dewey-full |
630 640 580 |
author2-role |
verfasserin |
title_sort |
leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
title_auth |
Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
abstract |
Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. |
abstractGer |
Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. |
abstract_unstemmed |
Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species |
remote_bool |
true |
author2 |
Wang, Chuankuan Luo, Dandan Hou, Enqing Ibrahim, Muhammed Mustapha |
author2Str |
Wang, Chuankuan Luo, Dandan Hou, Enqing Ibrahim, Muhammed Mustapha |
ppnlink |
324869193 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.plaphy.2023.107658 |
up_date |
2024-07-06T23:23:03.405Z |
_version_ |
1803873873724178432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009502408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plaphy.2023.107658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009502408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0981-9428(23)00162-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P 50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (K mL and K mB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P 50B, was more negative than P 50L across the year. The values of VS (P 50L minus P 50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, K mL positively correlated with K mB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vulnerability segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Winter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evergreen species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freeze-thaw cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chuankuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Dandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Enqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4864-2347</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ibrahim, Muhammed Mustapha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Plant physiology and biochemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1998</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324869193</subfield><subfield code="w">(DE-600)2031431-0</subfield><subfield code="w">(DE-576)094080925</subfield><subfield code="x">1873-2690</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
score |
7.4011803 |