Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films
The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that...
Ausführliche Beschreibung
Autor*in: |
Wang, Kai [verfasserIn] Zhou, Qinling [verfasserIn] Fan, Xinyu [verfasserIn] Fan, Yajing [verfasserIn] Wu, Jiating [verfasserIn] Masendu, Santana Vimbai [verfasserIn] Xu, Junhua [verfasserIn] Anton, Romanov [verfasserIn] Li, Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical physics - Amsterdam [u.a.] : Elsevier Science, 1973, 570 |
---|---|
Übergeordnetes Werk: |
volume:570 |
DOI / URN: |
10.1016/j.chemphys.2023.111900 |
---|
Katalog-ID: |
ELV00950513X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00950513X | ||
003 | DE-627 | ||
005 | 20230524162702.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemphys.2023.111900 |2 doi | |
035 | |a (DE-627)ELV00950513X | ||
035 | |a (ELSEVIER)S0301-0104(23)00082-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q DE-600 |
084 | |a 35.10 |2 bkl | ||
100 | 1 | |a Wang, Kai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. | ||
650 | 4 | |a Cuprous oxide | |
650 | 4 | |a Uniaxial strain | |
650 | 4 | |a Density functional theory | |
650 | 4 | |a Band structure | |
650 | 4 | |a Mobility | |
650 | 4 | |a Effective mass | |
700 | 1 | |a Zhou, Qinling |e verfasserin |4 aut | |
700 | 1 | |a Fan, Xinyu |e verfasserin |4 aut | |
700 | 1 | |a Fan, Yajing |e verfasserin |4 aut | |
700 | 1 | |a Wu, Jiating |e verfasserin |4 aut | |
700 | 1 | |a Masendu, Santana Vimbai |e verfasserin |4 aut | |
700 | 1 | |a Xu, Junhua |e verfasserin |4 aut | |
700 | 1 | |a Anton, Romanov |e verfasserin |4 aut | |
700 | 1 | |a Li, Yang |e verfasserin |0 (orcid)0000-0002-5066-1734 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical physics |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 570 |h Online-Ressource |w (DE-627)306717867 |w (DE-600)1501546-4 |w (DE-576)09408551X |7 nnns |
773 | 1 | 8 | |g volume:570 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.10 |j Physikalische Chemie: Allgemeines |
951 | |a AR | ||
952 | |d 570 |
author_variant |
k w kw q z qz x f xf y f yf j w jw s v m sv svm j x jx r a ra y l yl |
---|---|
matchkey_str |
wangkaizhouqinlingfanxinyufanyajingwujia:2023----:fetouixasriotelcrncrprisfuruoi |
hierarchy_sort_str |
2023 |
bklnumber |
35.10 |
publishDate |
2023 |
allfields |
10.1016/j.chemphys.2023.111900 doi (DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 DE-627 ger DE-627 rda eng 540 530 DE-600 35.10 bkl Wang, Kai verfasserin aut Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass Zhou, Qinling verfasserin aut Fan, Xinyu verfasserin aut Fan, Yajing verfasserin aut Wu, Jiating verfasserin aut Masendu, Santana Vimbai verfasserin aut Xu, Junhua verfasserin aut Anton, Romanov verfasserin aut Li, Yang verfasserin (orcid)0000-0002-5066-1734 aut Enthalten in Chemical physics Amsterdam [u.a.] : Elsevier Science, 1973 570 Online-Ressource (DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X nnns volume:570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.10 Physikalische Chemie: Allgemeines AR 570 |
spelling |
10.1016/j.chemphys.2023.111900 doi (DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 DE-627 ger DE-627 rda eng 540 530 DE-600 35.10 bkl Wang, Kai verfasserin aut Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass Zhou, Qinling verfasserin aut Fan, Xinyu verfasserin aut Fan, Yajing verfasserin aut Wu, Jiating verfasserin aut Masendu, Santana Vimbai verfasserin aut Xu, Junhua verfasserin aut Anton, Romanov verfasserin aut Li, Yang verfasserin (orcid)0000-0002-5066-1734 aut Enthalten in Chemical physics Amsterdam [u.a.] : Elsevier Science, 1973 570 Online-Ressource (DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X nnns volume:570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.10 Physikalische Chemie: Allgemeines AR 570 |
allfields_unstemmed |
10.1016/j.chemphys.2023.111900 doi (DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 DE-627 ger DE-627 rda eng 540 530 DE-600 35.10 bkl Wang, Kai verfasserin aut Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass Zhou, Qinling verfasserin aut Fan, Xinyu verfasserin aut Fan, Yajing verfasserin aut Wu, Jiating verfasserin aut Masendu, Santana Vimbai verfasserin aut Xu, Junhua verfasserin aut Anton, Romanov verfasserin aut Li, Yang verfasserin (orcid)0000-0002-5066-1734 aut Enthalten in Chemical physics Amsterdam [u.a.] : Elsevier Science, 1973 570 Online-Ressource (DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X nnns volume:570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.10 Physikalische Chemie: Allgemeines AR 570 |
allfieldsGer |
10.1016/j.chemphys.2023.111900 doi (DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 DE-627 ger DE-627 rda eng 540 530 DE-600 35.10 bkl Wang, Kai verfasserin aut Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass Zhou, Qinling verfasserin aut Fan, Xinyu verfasserin aut Fan, Yajing verfasserin aut Wu, Jiating verfasserin aut Masendu, Santana Vimbai verfasserin aut Xu, Junhua verfasserin aut Anton, Romanov verfasserin aut Li, Yang verfasserin (orcid)0000-0002-5066-1734 aut Enthalten in Chemical physics Amsterdam [u.a.] : Elsevier Science, 1973 570 Online-Ressource (DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X nnns volume:570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.10 Physikalische Chemie: Allgemeines AR 570 |
allfieldsSound |
10.1016/j.chemphys.2023.111900 doi (DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 DE-627 ger DE-627 rda eng 540 530 DE-600 35.10 bkl Wang, Kai verfasserin aut Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass Zhou, Qinling verfasserin aut Fan, Xinyu verfasserin aut Fan, Yajing verfasserin aut Wu, Jiating verfasserin aut Masendu, Santana Vimbai verfasserin aut Xu, Junhua verfasserin aut Anton, Romanov verfasserin aut Li, Yang verfasserin (orcid)0000-0002-5066-1734 aut Enthalten in Chemical physics Amsterdam [u.a.] : Elsevier Science, 1973 570 Online-Ressource (DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X nnns volume:570 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.10 Physikalische Chemie: Allgemeines AR 570 |
language |
English |
source |
Enthalten in Chemical physics 570 volume:570 |
sourceStr |
Enthalten in Chemical physics 570 volume:570 |
format_phy_str_mv |
Article |
bklname |
Physikalische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Chemical physics |
authorswithroles_txt_mv |
Wang, Kai @@aut@@ Zhou, Qinling @@aut@@ Fan, Xinyu @@aut@@ Fan, Yajing @@aut@@ Wu, Jiating @@aut@@ Masendu, Santana Vimbai @@aut@@ Xu, Junhua @@aut@@ Anton, Romanov @@aut@@ Li, Yang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306717867 |
dewey-sort |
3540 |
id |
ELV00950513X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00950513X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemphys.2023.111900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00950513X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-0104(23)00082-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprous oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniaxial strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density functional theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective mass</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Qinling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Xinyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yajing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jiating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masendu, Santana Vimbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Junhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anton, Romanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5066-1734</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical physics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">570</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306717867</subfield><subfield code="w">(DE-600)1501546-4</subfield><subfield code="w">(DE-576)09408551X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:570</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">570</subfield></datafield></record></collection>
|
author |
Wang, Kai |
spellingShingle |
Wang, Kai ddc 540 bkl 35.10 misc Cuprous oxide misc Uniaxial strain misc Density functional theory misc Band structure misc Mobility misc Effective mass Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
authorStr |
Wang, Kai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306717867 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 530 DE-600 35.10 bkl Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films Cuprous oxide Uniaxial strain Density functional theory Band structure Mobility Effective mass |
topic |
ddc 540 bkl 35.10 misc Cuprous oxide misc Uniaxial strain misc Density functional theory misc Band structure misc Mobility misc Effective mass |
topic_unstemmed |
ddc 540 bkl 35.10 misc Cuprous oxide misc Uniaxial strain misc Density functional theory misc Band structure misc Mobility misc Effective mass |
topic_browse |
ddc 540 bkl 35.10 misc Cuprous oxide misc Uniaxial strain misc Density functional theory misc Band structure misc Mobility misc Effective mass |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical physics |
hierarchy_parent_id |
306717867 |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Chemical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306717867 (DE-600)1501546-4 (DE-576)09408551X |
title |
Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
ctrlnum |
(DE-627)ELV00950513X (ELSEVIER)S0301-0104(23)00082-4 |
title_full |
Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
author_sort |
Wang, Kai |
journal |
Chemical physics |
journalStr |
Chemical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Kai Zhou, Qinling Fan, Xinyu Fan, Yajing Wu, Jiating Masendu, Santana Vimbai Xu, Junhua Anton, Romanov Li, Yang |
container_volume |
570 |
class |
540 530 DE-600 35.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Kai |
doi_str_mv |
10.1016/j.chemphys.2023.111900 |
normlink |
(ORCID)0000-0002-5066-1734 |
normlink_prefix_str_mv |
(orcid)0000-0002-5066-1734 |
dewey-full |
540 530 |
author2-role |
verfasserin |
title_sort |
effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
title_auth |
Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
abstract |
The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. |
abstractGer |
The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. |
abstract_unstemmed |
The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films |
remote_bool |
true |
author2 |
Zhou, Qinling Fan, Xinyu Fan, Yajing Wu, Jiating Masendu, Santana Vimbai Xu, Junhua Anton, Romanov Li, Yang |
author2Str |
Zhou, Qinling Fan, Xinyu Fan, Yajing Wu, Jiating Masendu, Santana Vimbai Xu, Junhua Anton, Romanov Li, Yang |
ppnlink |
306717867 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chemphys.2023.111900 |
up_date |
2024-07-06T23:23:37.294Z |
_version_ |
1803873909260419072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00950513X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemphys.2023.111900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00950513X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-0104(23)00082-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of uniaxial strain on the electronic properties of cuprous oxide single-crystal films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis of strain on cuprous oxide (Cu2O) single-crystal films is a research gap that needs to be filled. Herein, for the first time, we investigate the effects of strain engineering on the (111)-oriented Cu2O single-crystal films via first-principles simulations. It is interesting to find that the band structure and electronic characteristics can be effectively controlled and regulated under uniaxial strain. The bandgap can be tuned from 0.828 eV to 0.775 eV and 0.818 eV, respectively, under tension and compression. On the other side, the impacts of the uniaxial strain on the carrier mobilities are simulated on the basis of deformation potential theory, indicating that compression is more conducive to promoting the carrier mobilities in comparison with tension. The electron mobility (μe ) increases from 1.04 × 102 cm2∙V−1∙s−1 to 3.06 × 102 cm2∙V−1∙s−1 while the hole mobility (μh ) increases from 0.34 × 102 cm2∙V−1∙s−1 to 1.83 × 102 cm2∙V−1∙s−1 under −3% compression ratio. Moreover, the effects of strain engineering on the carrier mobilities at different temperatures (100 ∼ 400 K) are also systematically investigated. This study advances our understanding of the physicochemical properties of Cu2O functional devices and provides theoretical guidance for their use in optoelectronic fields and electronic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprous oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniaxial strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density functional theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective mass</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Qinling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Xinyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yajing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jiating</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masendu, Santana Vimbai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Junhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anton, Romanov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5066-1734</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical physics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">570</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306717867</subfield><subfield code="w">(DE-600)1501546-4</subfield><subfield code="w">(DE-576)09408551X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:570</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">570</subfield></datafield></record></collection>
|
score |
7.399419 |