Influence of B
In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-par...
Ausführliche Beschreibung
Autor*in: |
Alzahrani, Jamila S. [verfasserIn] Alrowaili, Z.A. [verfasserIn] Boukhris, Imed [verfasserIn] Eke, Canel [verfasserIn] Olarinoye, I.O. [verfasserIn] Al-Buriahi, M.S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Radiation physics and chemistry - Oxford [u.a.] : Pergamon Press, 1977, 208 |
---|---|
Übergeordnetes Werk: |
volume:208 |
DOI / URN: |
10.1016/j.radphyschem.2023.110877 |
---|
Katalog-ID: |
ELV009558705 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009558705 | ||
003 | DE-627 | ||
005 | 20230524164447.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.radphyschem.2023.110877 |2 doi | |
035 | |a (DE-627)ELV009558705 | ||
035 | |a (ELSEVIER)S0969-806X(23)00122-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q DE-600 |
084 | |a 35.15 |2 bkl | ||
084 | |a 33.40 |2 bkl | ||
100 | 1 | |a Alzahrani, Jamila S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of B |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. | ||
650 | 4 | |a Radiation shielding | |
650 | 4 | |a Nuclear safety | |
650 | 4 | |a Glass system | |
650 | 4 | |a FLUKA simulations | |
700 | 1 | |a Alrowaili, Z.A. |e verfasserin |4 aut | |
700 | 1 | |a Boukhris, Imed |e verfasserin |4 aut | |
700 | 1 | |a Eke, Canel |e verfasserin |4 aut | |
700 | 1 | |a Olarinoye, I.O. |e verfasserin |4 aut | |
700 | 1 | |a Al-Buriahi, M.S. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiation physics and chemistry |d Oxford [u.a.] : Pergamon Press, 1977 |g 208 |h Online-Ressource |w (DE-627)320596486 |w (DE-600)2019621-0 |w (DE-576)251938263 |x 1878-1020 |7 nnns |
773 | 1 | 8 | |g volume:208 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.15 |j Radiochemie |
936 | b | k | |a 33.40 |j Kernphysik |
951 | |a AR | ||
952 | |d 208 |
author_variant |
j s a js jsa z a za i b ib c e ce i o io m a b mab |
---|---|
matchkey_str |
article:18781020:2023----::nlec |
hierarchy_sort_str |
2023 |
bklnumber |
35.15 33.40 |
publishDate |
2023 |
allfields |
10.1016/j.radphyschem.2023.110877 doi (DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 DE-627 ger DE-627 rda eng 540 530 DE-600 35.15 bkl 33.40 bkl Alzahrani, Jamila S. verfasserin aut Influence of B 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. Radiation shielding Nuclear safety Glass system FLUKA simulations Alrowaili, Z.A. verfasserin aut Boukhris, Imed verfasserin aut Eke, Canel verfasserin aut Olarinoye, I.O. verfasserin aut Al-Buriahi, M.S. verfasserin aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 208 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:208 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie 33.40 Kernphysik AR 208 |
spelling |
10.1016/j.radphyschem.2023.110877 doi (DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 DE-627 ger DE-627 rda eng 540 530 DE-600 35.15 bkl 33.40 bkl Alzahrani, Jamila S. verfasserin aut Influence of B 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. Radiation shielding Nuclear safety Glass system FLUKA simulations Alrowaili, Z.A. verfasserin aut Boukhris, Imed verfasserin aut Eke, Canel verfasserin aut Olarinoye, I.O. verfasserin aut Al-Buriahi, M.S. verfasserin aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 208 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:208 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie 33.40 Kernphysik AR 208 |
allfields_unstemmed |
10.1016/j.radphyschem.2023.110877 doi (DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 DE-627 ger DE-627 rda eng 540 530 DE-600 35.15 bkl 33.40 bkl Alzahrani, Jamila S. verfasserin aut Influence of B 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. Radiation shielding Nuclear safety Glass system FLUKA simulations Alrowaili, Z.A. verfasserin aut Boukhris, Imed verfasserin aut Eke, Canel verfasserin aut Olarinoye, I.O. verfasserin aut Al-Buriahi, M.S. verfasserin aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 208 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:208 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie 33.40 Kernphysik AR 208 |
allfieldsGer |
10.1016/j.radphyschem.2023.110877 doi (DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 DE-627 ger DE-627 rda eng 540 530 DE-600 35.15 bkl 33.40 bkl Alzahrani, Jamila S. verfasserin aut Influence of B 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. Radiation shielding Nuclear safety Glass system FLUKA simulations Alrowaili, Z.A. verfasserin aut Boukhris, Imed verfasserin aut Eke, Canel verfasserin aut Olarinoye, I.O. verfasserin aut Al-Buriahi, M.S. verfasserin aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 208 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:208 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie 33.40 Kernphysik AR 208 |
allfieldsSound |
10.1016/j.radphyschem.2023.110877 doi (DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 DE-627 ger DE-627 rda eng 540 530 DE-600 35.15 bkl 33.40 bkl Alzahrani, Jamila S. verfasserin aut Influence of B 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. Radiation shielding Nuclear safety Glass system FLUKA simulations Alrowaili, Z.A. verfasserin aut Boukhris, Imed verfasserin aut Eke, Canel verfasserin aut Olarinoye, I.O. verfasserin aut Al-Buriahi, M.S. verfasserin aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 208 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:208 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie 33.40 Kernphysik AR 208 |
language |
English |
source |
Enthalten in Radiation physics and chemistry 208 volume:208 |
sourceStr |
Enthalten in Radiation physics and chemistry 208 volume:208 |
format_phy_str_mv |
Article |
bklname |
Radiochemie Kernphysik |
institution |
findex.gbv.de |
topic_facet |
Radiation shielding Nuclear safety Glass system FLUKA simulations |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Radiation physics and chemistry |
authorswithroles_txt_mv |
Alzahrani, Jamila S. @@aut@@ Alrowaili, Z.A. @@aut@@ Boukhris, Imed @@aut@@ Eke, Canel @@aut@@ Olarinoye, I.O. @@aut@@ Al-Buriahi, M.S. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320596486 |
dewey-sort |
3540 |
id |
ELV009558705 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009558705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164447.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radphyschem.2023.110877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009558705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0969-806X(23)00122-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alzahrani, Jamila S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of B</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation shielding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FLUKA simulations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alrowaili, Z.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boukhris, Imed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eke, Canel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olarinoye, I.O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Buriahi, M.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation physics and chemistry</subfield><subfield code="d">Oxford [u.a.] : Pergamon Press, 1977</subfield><subfield code="g">208</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320596486</subfield><subfield code="w">(DE-600)2019621-0</subfield><subfield code="w">(DE-576)251938263</subfield><subfield code="x">1878-1020</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:208</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.15</subfield><subfield code="j">Radiochemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">208</subfield></datafield></record></collection>
|
author |
Alzahrani, Jamila S. |
spellingShingle |
Alzahrani, Jamila S. ddc 540 bkl 35.15 bkl 33.40 misc Radiation shielding misc Nuclear safety misc Glass system misc FLUKA simulations Influence of B |
authorStr |
Alzahrani, Jamila S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320596486 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1878-1020 |
topic_title |
540 530 DE-600 35.15 bkl 33.40 bkl Influence of B Radiation shielding Nuclear safety Glass system FLUKA simulations |
topic |
ddc 540 bkl 35.15 bkl 33.40 misc Radiation shielding misc Nuclear safety misc Glass system misc FLUKA simulations |
topic_unstemmed |
ddc 540 bkl 35.15 bkl 33.40 misc Radiation shielding misc Nuclear safety misc Glass system misc FLUKA simulations |
topic_browse |
ddc 540 bkl 35.15 bkl 33.40 misc Radiation shielding misc Nuclear safety misc Glass system misc FLUKA simulations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Radiation physics and chemistry |
hierarchy_parent_id |
320596486 |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Radiation physics and chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 |
title |
Influence of B |
ctrlnum |
(DE-627)ELV009558705 (ELSEVIER)S0969-806X(23)00122-6 |
title_full |
Influence of B |
author_sort |
Alzahrani, Jamila S. |
journal |
Radiation physics and chemistry |
journalStr |
Radiation physics and chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Alzahrani, Jamila S. Alrowaili, Z.A. Boukhris, Imed Eke, Canel Olarinoye, I.O. Al-Buriahi, M.S. |
container_volume |
208 |
class |
540 530 DE-600 35.15 bkl 33.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Alzahrani, Jamila S. |
doi_str_mv |
10.1016/j.radphyschem.2023.110877 |
dewey-full |
540 530 |
author2-role |
verfasserin |
title_sort |
influence of b |
title_auth |
Influence of B |
abstract |
In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. |
abstractGer |
In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. |
abstract_unstemmed |
In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Influence of B |
remote_bool |
true |
author2 |
Alrowaili, Z.A. Boukhris, Imed Eke, Canel Olarinoye, I.O. Al-Buriahi, M.S. |
author2Str |
Alrowaili, Z.A. Boukhris, Imed Eke, Canel Olarinoye, I.O. Al-Buriahi, M.S. |
ppnlink |
320596486 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.radphyschem.2023.110877 |
up_date |
2024-07-06T23:34:25.020Z |
_version_ |
1803874588450357248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009558705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164447.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radphyschem.2023.110877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009558705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0969-806X(23)00122-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alzahrani, Jamila S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of B</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the quest to probe the potential of (40-x)B2O3–39SiO2–(20+x)Bi2O3–1Dy2O3 (BSBD1 –BSBD4) glasses, their interaction parameter with multispectral radiation is calculated, analyzed and presented in this report. The FLUKA code was used to simulate photons, charged particles (electrons, protons, α-particle, and carbon ions), and slow neutron cross sections of the glasses. In addition, the fissile and thermal neutron attenuation cross sections were evaluated through analytic expressions. The mass attenuation coefficient of the BSBD glasses varied from 0.0364 cm2/g to 68.9445 cm2/g for BSBD1, 0.0382 cm2/g to 80.1942 cm2/g for BSBD2, 0.0392 cm2/g to 87.5237 cm2/g for BSBD3, and 0.04001 cm2/g to 92.6780 cm2/g for BSBD4. Other photon attenuation parameters showed that the BSBD4 glass is the best photon attenuator. The range and stopping power of the charged particles also revealed that charged particle attenuation depends strongly on the density and Bi2O3 quantity. The neutron absorbing/shielding ability of the glasses showed a contrasting trend compared to photons and charged particles. While BSBD2 was the best fast neutron absorber, BSBD1 on the other hand, showed greater resilience to thermal and slow neutrons. Based on the analyzed data analyzed in this study, the BSBD glasses showed great potential for radiation protection ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation shielding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FLUKA simulations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alrowaili, Z.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boukhris, Imed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eke, Canel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olarinoye, I.O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Buriahi, M.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation physics and chemistry</subfield><subfield code="d">Oxford [u.a.] : Pergamon Press, 1977</subfield><subfield code="g">208</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320596486</subfield><subfield code="w">(DE-600)2019621-0</subfield><subfield code="w">(DE-576)251938263</subfield><subfield code="x">1878-1020</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:208</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.15</subfield><subfield code="j">Radiochemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">208</subfield></datafield></record></collection>
|
score |
7.401457 |