Adsorption performance of phosphate in water by mixed precursor base geopolymers
Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption...
Ausführliche Beschreibung
Autor*in: |
Zhou, Wentao [verfasserIn] Lan, Tian [verfasserIn] Shang, Gaofei [verfasserIn] Li, Jianhong [verfasserIn] Geng, Jianjian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of contaminant hydrology - Amsterdam [u.a.] : Elsevier Science, 1986, 255 |
---|---|
Übergeordnetes Werk: |
volume:255 |
DOI / URN: |
10.1016/j.jconhyd.2023.104166 |
---|
Katalog-ID: |
ELV009593071 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009593071 | ||
003 | DE-627 | ||
005 | 20230524160050.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jconhyd.2023.104166 |2 doi | |
035 | |a (DE-627)ELV009593071 | ||
035 | |a (ELSEVIER)S0169-7722(23)00036-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.86 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
084 | |a 58.51 |2 bkl | ||
100 | 1 | |a Zhou, Wentao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adsorption performance of phosphate in water by mixed precursor base geopolymers |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. | ||
650 | 4 | |a Fly ash | |
650 | 4 | |a Metakaolin | |
650 | 4 | |a Geopolymers | |
650 | 4 | |a Phosphate | |
650 | 4 | |a Water treatment | |
700 | 1 | |a Lan, Tian |e verfasserin |4 aut | |
700 | 1 | |a Shang, Gaofei |e verfasserin |4 aut | |
700 | 1 | |a Li, Jianhong |e verfasserin |4 aut | |
700 | 1 | |a Geng, Jianjian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of contaminant hydrology |d Amsterdam [u.a.] : Elsevier Science, 1986 |g 255 |h Online-Ressource |w (DE-627)303392169 |w (DE-600)1494766-3 |w (DE-576)095237887 |x 1873-6009 |7 nnns |
773 | 1 | 8 | |g volume:255 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.86 |j Grundwasser |
936 | b | k | |a 43.50 |j Umweltbelastungen |
936 | b | k | |a 58.51 |j Abwassertechnik |j Wasseraufbereitung |
951 | |a AR | ||
952 | |d 255 |
author_variant |
w z wz t l tl g s gs j l jl j g jg |
---|---|
matchkey_str |
article:18736009:2023----::dopinefracopopaenaebmxdrc |
hierarchy_sort_str |
2023 |
bklnumber |
38.86 43.50 58.51 |
publishDate |
2023 |
allfields |
10.1016/j.jconhyd.2023.104166 doi (DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 DE-627 ger DE-627 rda eng 550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Zhou, Wentao verfasserin aut Adsorption performance of phosphate in water by mixed precursor base geopolymers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. Fly ash Metakaolin Geopolymers Phosphate Water treatment Lan, Tian verfasserin aut Shang, Gaofei verfasserin aut Li, Jianhong verfasserin aut Geng, Jianjian verfasserin aut Enthalten in Journal of contaminant hydrology Amsterdam [u.a.] : Elsevier Science, 1986 255 Online-Ressource (DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 1873-6009 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.86 Grundwasser 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 255 |
spelling |
10.1016/j.jconhyd.2023.104166 doi (DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 DE-627 ger DE-627 rda eng 550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Zhou, Wentao verfasserin aut Adsorption performance of phosphate in water by mixed precursor base geopolymers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. Fly ash Metakaolin Geopolymers Phosphate Water treatment Lan, Tian verfasserin aut Shang, Gaofei verfasserin aut Li, Jianhong verfasserin aut Geng, Jianjian verfasserin aut Enthalten in Journal of contaminant hydrology Amsterdam [u.a.] : Elsevier Science, 1986 255 Online-Ressource (DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 1873-6009 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.86 Grundwasser 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 255 |
allfields_unstemmed |
10.1016/j.jconhyd.2023.104166 doi (DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 DE-627 ger DE-627 rda eng 550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Zhou, Wentao verfasserin aut Adsorption performance of phosphate in water by mixed precursor base geopolymers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. Fly ash Metakaolin Geopolymers Phosphate Water treatment Lan, Tian verfasserin aut Shang, Gaofei verfasserin aut Li, Jianhong verfasserin aut Geng, Jianjian verfasserin aut Enthalten in Journal of contaminant hydrology Amsterdam [u.a.] : Elsevier Science, 1986 255 Online-Ressource (DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 1873-6009 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.86 Grundwasser 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 255 |
allfieldsGer |
10.1016/j.jconhyd.2023.104166 doi (DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 DE-627 ger DE-627 rda eng 550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Zhou, Wentao verfasserin aut Adsorption performance of phosphate in water by mixed precursor base geopolymers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. Fly ash Metakaolin Geopolymers Phosphate Water treatment Lan, Tian verfasserin aut Shang, Gaofei verfasserin aut Li, Jianhong verfasserin aut Geng, Jianjian verfasserin aut Enthalten in Journal of contaminant hydrology Amsterdam [u.a.] : Elsevier Science, 1986 255 Online-Ressource (DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 1873-6009 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.86 Grundwasser 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 255 |
allfieldsSound |
10.1016/j.jconhyd.2023.104166 doi (DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 DE-627 ger DE-627 rda eng 550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Zhou, Wentao verfasserin aut Adsorption performance of phosphate in water by mixed precursor base geopolymers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. Fly ash Metakaolin Geopolymers Phosphate Water treatment Lan, Tian verfasserin aut Shang, Gaofei verfasserin aut Li, Jianhong verfasserin aut Geng, Jianjian verfasserin aut Enthalten in Journal of contaminant hydrology Amsterdam [u.a.] : Elsevier Science, 1986 255 Online-Ressource (DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 1873-6009 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.86 Grundwasser 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 255 |
language |
English |
source |
Enthalten in Journal of contaminant hydrology 255 volume:255 |
sourceStr |
Enthalten in Journal of contaminant hydrology 255 volume:255 |
format_phy_str_mv |
Article |
bklname |
Grundwasser Umweltbelastungen Abwassertechnik Wasseraufbereitung |
institution |
findex.gbv.de |
topic_facet |
Fly ash Metakaolin Geopolymers Phosphate Water treatment |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of contaminant hydrology |
authorswithroles_txt_mv |
Zhou, Wentao @@aut@@ Lan, Tian @@aut@@ Shang, Gaofei @@aut@@ Li, Jianhong @@aut@@ Geng, Jianjian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
303392169 |
dewey-sort |
3550 |
id |
ELV009593071 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009593071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jconhyd.2023.104166</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009593071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7722(23)00036-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.86</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Wentao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption performance of phosphate in water by mixed precursor base geopolymers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fly ash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metakaolin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Gaofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Jianjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of contaminant hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">255</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303392169</subfield><subfield code="w">(DE-600)1494766-3</subfield><subfield code="w">(DE-576)095237887</subfield><subfield code="x">1873-6009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.86</subfield><subfield code="j">Grundwasser</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield></datafield></record></collection>
|
author |
Zhou, Wentao |
spellingShingle |
Zhou, Wentao ddc 550 bkl 38.86 bkl 43.50 bkl 58.51 misc Fly ash misc Metakaolin misc Geopolymers misc Phosphate misc Water treatment Adsorption performance of phosphate in water by mixed precursor base geopolymers |
authorStr |
Zhou, Wentao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)303392169 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6009 |
topic_title |
550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl Adsorption performance of phosphate in water by mixed precursor base geopolymers Fly ash Metakaolin Geopolymers Phosphate Water treatment |
topic |
ddc 550 bkl 38.86 bkl 43.50 bkl 58.51 misc Fly ash misc Metakaolin misc Geopolymers misc Phosphate misc Water treatment |
topic_unstemmed |
ddc 550 bkl 38.86 bkl 43.50 bkl 58.51 misc Fly ash misc Metakaolin misc Geopolymers misc Phosphate misc Water treatment |
topic_browse |
ddc 550 bkl 38.86 bkl 43.50 bkl 58.51 misc Fly ash misc Metakaolin misc Geopolymers misc Phosphate misc Water treatment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of contaminant hydrology |
hierarchy_parent_id |
303392169 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of contaminant hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)303392169 (DE-600)1494766-3 (DE-576)095237887 |
title |
Adsorption performance of phosphate in water by mixed precursor base geopolymers |
ctrlnum |
(DE-627)ELV009593071 (ELSEVIER)S0169-7722(23)00036-0 |
title_full |
Adsorption performance of phosphate in water by mixed precursor base geopolymers |
author_sort |
Zhou, Wentao |
journal |
Journal of contaminant hydrology |
journalStr |
Journal of contaminant hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Wentao Lan, Tian Shang, Gaofei Li, Jianhong Geng, Jianjian |
container_volume |
255 |
class |
550 DE-600 38.86 bkl 43.50 bkl 58.51 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Wentao |
doi_str_mv |
10.1016/j.jconhyd.2023.104166 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
adsorption performance of phosphate in water by mixed precursor base geopolymers |
title_auth |
Adsorption performance of phosphate in water by mixed precursor base geopolymers |
abstract |
Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. |
abstractGer |
Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. |
abstract_unstemmed |
Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Adsorption performance of phosphate in water by mixed precursor base geopolymers |
remote_bool |
true |
author2 |
Lan, Tian Shang, Gaofei Li, Jianhong Geng, Jianjian |
author2Str |
Lan, Tian Shang, Gaofei Li, Jianhong Geng, Jianjian |
ppnlink |
303392169 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jconhyd.2023.104166 |
up_date |
2024-07-06T23:41:26.795Z |
_version_ |
1803875030713499648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009593071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jconhyd.2023.104166</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009593071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-7722(23)00036-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.86</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Wentao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption performance of phosphate in water by mixed precursor base geopolymers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fly ash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metakaolin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Gaofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Jianjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of contaminant hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">255</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303392169</subfield><subfield code="w">(DE-600)1494766-3</subfield><subfield code="w">(DE-576)095237887</subfield><subfield code="x">1873-6009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.86</subfield><subfield code="j">Grundwasser</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield></datafield></record></collection>
|
score |
7.4017506 |