Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications
Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R40...
Ausführliche Beschreibung
Autor*in: |
Hu, Yafei [verfasserIn] Feng, Ziping [verfasserIn] Song, Wenji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 228 |
---|---|
Übergeordnetes Werk: |
volume:228 |
DOI / URN: |
10.1016/j.applthermaleng.2023.120538 |
---|
Katalog-ID: |
ELV009638377 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009638377 | ||
003 | DE-627 | ||
005 | 20230928122251.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230511s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2023.120538 |2 doi | |
035 | |a (DE-627)ELV009638377 | ||
035 | |a (ELSEVIER)S1359-4311(23)00567-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Hu, Yafei |e verfasserin |0 (orcid)0000-0003-4845-5621 |4 aut | |
245 | 1 | 0 | |a Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. | ||
650 | 4 | |a Gas engine-driven heat pump | |
650 | 4 | |a Domestic hot water | |
650 | 4 | |a Heating performance | |
650 | 4 | |a Primary energy ratio | |
650 | 4 | |a Heat recovery | |
650 | 4 | |a Distributed energy system | |
700 | 1 | |a Feng, Ziping |e verfasserin |4 aut | |
700 | 1 | |a Song, Wenji |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 228 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:228 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 228 |
author_variant |
y h yh z f zf w s ws |
---|---|
matchkey_str |
article:13594311:2023----::tdopromnefgsniervnetupytmih40fretnado |
hierarchy_sort_str |
2023 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2023 |
allfields |
10.1016/j.applthermaleng.2023.120538 doi (DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Hu, Yafei verfasserin (orcid)0000-0003-4845-5621 aut Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system Feng, Ziping verfasserin aut Song, Wenji verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 228 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:228 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 228 |
spelling |
10.1016/j.applthermaleng.2023.120538 doi (DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Hu, Yafei verfasserin (orcid)0000-0003-4845-5621 aut Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system Feng, Ziping verfasserin aut Song, Wenji verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 228 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:228 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 228 |
allfields_unstemmed |
10.1016/j.applthermaleng.2023.120538 doi (DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Hu, Yafei verfasserin (orcid)0000-0003-4845-5621 aut Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system Feng, Ziping verfasserin aut Song, Wenji verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 228 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:228 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 228 |
allfieldsGer |
10.1016/j.applthermaleng.2023.120538 doi (DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Hu, Yafei verfasserin (orcid)0000-0003-4845-5621 aut Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system Feng, Ziping verfasserin aut Song, Wenji verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 228 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:228 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 228 |
allfieldsSound |
10.1016/j.applthermaleng.2023.120538 doi (DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Hu, Yafei verfasserin (orcid)0000-0003-4845-5621 aut Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system Feng, Ziping verfasserin aut Song, Wenji verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 228 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:228 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 228 |
language |
English |
source |
Enthalten in Applied thermal engineering 228 volume:228 |
sourceStr |
Enthalten in Applied thermal engineering 228 volume:228 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Hu, Yafei @@aut@@ Feng, Ziping @@aut@@ Song, Wenji @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV009638377 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009638377</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928122251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.120538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009638377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)00567-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Yafei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4845-5621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas engine-driven heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domestic hot water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary energy ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed energy system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Ziping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Wenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">228</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield></datafield></record></collection>
|
author |
Hu, Yafei |
spellingShingle |
Hu, Yafei ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Gas engine-driven heat pump misc Domestic hot water misc Heating performance misc Primary energy ratio misc Heat recovery misc Distributed energy system Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
authorStr |
Hu, Yafei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications Gas engine-driven heat pump Domestic hot water Heating performance Primary energy ratio Heat recovery Distributed energy system |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Gas engine-driven heat pump misc Domestic hot water misc Heating performance misc Primary energy ratio misc Heat recovery misc Distributed energy system |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Gas engine-driven heat pump misc Domestic hot water misc Heating performance misc Primary energy ratio misc Heat recovery misc Distributed energy system |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Gas engine-driven heat pump misc Domestic hot water misc Heating performance misc Primary energy ratio misc Heat recovery misc Distributed energy system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
ctrlnum |
(DE-627)ELV009638377 (ELSEVIER)S1359-4311(23)00567-7 |
title_full |
Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
author_sort |
Hu, Yafei |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hu, Yafei Feng, Ziping Song, Wenji |
container_volume |
228 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hu, Yafei |
doi_str_mv |
10.1016/j.applthermaleng.2023.120538 |
normlink |
(ORCID)0000-0003-4845-5621 |
normlink_prefix_str_mv |
(orcid)0000-0003-4845-5621 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
study on performance of a gas engine-driven heat pump system with r410a for heating and domestic hot water applications |
title_auth |
Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
abstract |
Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. |
abstractGer |
Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. |
abstract_unstemmed |
Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications |
remote_bool |
true |
author2 |
Feng, Ziping Song, Wenji |
author2Str |
Feng, Ziping Song, Wenji |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2023.120538 |
up_date |
2024-07-06T23:50:49.296Z |
_version_ |
1803875620536451072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009638377</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928122251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230511s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.120538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009638377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)00567-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Yafei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4845-5621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional gas engine-driven heat pump (GHP) systems were switched off in the transitional season, and the engine waste heat could no longer be used for producing domestic hot water. Most studies on GHP systems used piston compressors with low efficiency, and the refrigerants used were R134a or R407C. This paper presents an innovative GHP system using open scroll compressors with R410A which can be used throughout the year. The novel GHP system can be switched freely between heating mode-H, which produced heating water combined with domestic hot water, and heating mode-D which only produced domestic hot water. In these two heating modes, the effects of different condenser water outlet temperatures (t w,out1), domestic hot water outlet temperatures (t w,out2), engine speeds (N eng), and total domestic hot water outlet temperatures (t w,out3) on performance of the GHP system for heating and domestic hot water applications were experimentally investigated. The results show that t w,out1 and t w,out3 have greater effect on primary energy ratio (PER), N eng has significantly larger effect on heating capacity and the recovered waste heat, whereas t w,out2 has little effect on the comprehensive performance. The change between heating mode-H and heating mode-D hardly affects the system heating performance. For the experiments, the waste heat recovery rates are between 42.05 % and 61.08 %. The total PER of the GHP system ranges from 1.179 to 1.453 without waste heat recovery, while it ranges from 1.521 to 1.834 when the engine waste heat is recovered. It indicates that the total PER can be significantly improved by recovering the engine waste heat.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas engine-driven heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domestic hot water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary energy ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed energy system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Ziping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Wenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">228</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield></datafield></record></collection>
|
score |
7.4003944 |