Scanning strategy for surface defects evaluation of large fine optical components
Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aper...
Ausführliche Beschreibung
Autor*in: |
Wang, Shiling [verfasserIn] Sun, Huanyu [verfasserIn] Hu, Xiaobo [verfasserIn] Zou, Sirui [verfasserIn] Guo, Shiwei [verfasserIn] Wang, Hongxia [verfasserIn] Sun, Feng [verfasserIn] Cheng, Xinglei [verfasserIn] Zhang, Junan [verfasserIn] Liu, Dong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Optics & laser technology - Amsterdam [u.a.] : Elsevier Science, 1971, 156 |
---|---|
Übergeordnetes Werk: |
volume:156 |
DOI / URN: |
10.1016/j.optlastec.2022.108473 |
---|
Katalog-ID: |
ELV009686495 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009686495 | ||
003 | DE-627 | ||
005 | 20230606133742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optlastec.2022.108473 |2 doi | |
035 | |a (DE-627)ELV009686495 | ||
035 | |a (ELSEVIER)S0030-3992(22)00629-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.37 |2 bkl | ||
084 | |a 53.75 |2 bkl | ||
084 | |a 33.18 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
100 | 1 | |a Wang, Shiling |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scanning strategy for surface defects evaluation of large fine optical components |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. | ||
650 | 4 | |a Optical components | |
650 | 4 | |a Defect detection | |
650 | 4 | |a Dark field microscopic imaging | |
650 | 4 | |a Sub-region and sub-aperture scanning | |
700 | 1 | |a Sun, Huanyu |e verfasserin |4 aut | |
700 | 1 | |a Hu, Xiaobo |e verfasserin |4 aut | |
700 | 1 | |a Zou, Sirui |e verfasserin |4 aut | |
700 | 1 | |a Guo, Shiwei |e verfasserin |4 aut | |
700 | 1 | |a Wang, Hongxia |e verfasserin |4 aut | |
700 | 1 | |a Sun, Feng |e verfasserin |4 aut | |
700 | 1 | |a Cheng, Xinglei |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Junan |e verfasserin |4 aut | |
700 | 1 | |a Liu, Dong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optics & laser technology |d Amsterdam [u.a.] : Elsevier Science, 1971 |g 156 |h Online-Ressource |w (DE-627)319950689 |w (DE-600)2000654-8 |w (DE-576)255266731 |x 1879-2545 |7 nnns |
773 | 1 | 8 | |g volume:156 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.37 |j Technische Optik |q VZ |
936 | b | k | |a 53.75 |j Optische Nachrichtentechnik |q VZ |
936 | b | k | |a 33.18 |j Optik |q VZ |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |q VZ |
951 | |a AR | ||
952 | |d 156 |
author_variant |
s w sw h s hs x h xh s z sz s g sg h w hw f s fs x c xc j z jz d l dl |
---|---|
matchkey_str |
article:18792545:2022----::cnigtaeyosraeeeteautoolre |
hierarchy_sort_str |
2022 |
bklnumber |
50.37 53.75 33.18 33.38 |
publishDate |
2022 |
allfields |
10.1016/j.optlastec.2022.108473 doi (DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Wang, Shiling verfasserin aut Scanning strategy for surface defects evaluation of large fine optical components 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning Sun, Huanyu verfasserin aut Hu, Xiaobo verfasserin aut Zou, Sirui verfasserin aut Guo, Shiwei verfasserin aut Wang, Hongxia verfasserin aut Sun, Feng verfasserin aut Cheng, Xinglei verfasserin aut Zhang, Junan verfasserin aut Liu, Dong verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 156 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:156 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 156 |
spelling |
10.1016/j.optlastec.2022.108473 doi (DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Wang, Shiling verfasserin aut Scanning strategy for surface defects evaluation of large fine optical components 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning Sun, Huanyu verfasserin aut Hu, Xiaobo verfasserin aut Zou, Sirui verfasserin aut Guo, Shiwei verfasserin aut Wang, Hongxia verfasserin aut Sun, Feng verfasserin aut Cheng, Xinglei verfasserin aut Zhang, Junan verfasserin aut Liu, Dong verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 156 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:156 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 156 |
allfields_unstemmed |
10.1016/j.optlastec.2022.108473 doi (DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Wang, Shiling verfasserin aut Scanning strategy for surface defects evaluation of large fine optical components 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning Sun, Huanyu verfasserin aut Hu, Xiaobo verfasserin aut Zou, Sirui verfasserin aut Guo, Shiwei verfasserin aut Wang, Hongxia verfasserin aut Sun, Feng verfasserin aut Cheng, Xinglei verfasserin aut Zhang, Junan verfasserin aut Liu, Dong verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 156 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:156 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 156 |
allfieldsGer |
10.1016/j.optlastec.2022.108473 doi (DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Wang, Shiling verfasserin aut Scanning strategy for surface defects evaluation of large fine optical components 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning Sun, Huanyu verfasserin aut Hu, Xiaobo verfasserin aut Zou, Sirui verfasserin aut Guo, Shiwei verfasserin aut Wang, Hongxia verfasserin aut Sun, Feng verfasserin aut Cheng, Xinglei verfasserin aut Zhang, Junan verfasserin aut Liu, Dong verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 156 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:156 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 156 |
allfieldsSound |
10.1016/j.optlastec.2022.108473 doi (DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Wang, Shiling verfasserin aut Scanning strategy for surface defects evaluation of large fine optical components 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning Sun, Huanyu verfasserin aut Hu, Xiaobo verfasserin aut Zou, Sirui verfasserin aut Guo, Shiwei verfasserin aut Wang, Hongxia verfasserin aut Sun, Feng verfasserin aut Cheng, Xinglei verfasserin aut Zhang, Junan verfasserin aut Liu, Dong verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 156 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:156 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 156 |
language |
English |
source |
Enthalten in Optics & laser technology 156 volume:156 |
sourceStr |
Enthalten in Optics & laser technology 156 volume:156 |
format_phy_str_mv |
Article |
bklname |
Technische Optik Optische Nachrichtentechnik Optik Quantenoptik nichtlineare Optik |
institution |
findex.gbv.de |
topic_facet |
Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optics & laser technology |
authorswithroles_txt_mv |
Wang, Shiling @@aut@@ Sun, Huanyu @@aut@@ Hu, Xiaobo @@aut@@ Zou, Sirui @@aut@@ Guo, Shiwei @@aut@@ Wang, Hongxia @@aut@@ Sun, Feng @@aut@@ Cheng, Xinglei @@aut@@ Zhang, Junan @@aut@@ Liu, Dong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
319950689 |
dewey-sort |
3530 |
id |
ELV009686495 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009686495</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlastec.2022.108473</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009686495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-3992(22)00629-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shiling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning strategy for surface defects evaluation of large fine optical components</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dark field microscopic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sub-region and sub-aperture scanning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Huanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Xiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Sirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Shiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Xinglei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optics & laser technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1971</subfield><subfield code="g">156</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319950689</subfield><subfield code="w">(DE-600)2000654-8</subfield><subfield code="w">(DE-576)255266731</subfield><subfield code="x">1879-2545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.75</subfield><subfield code="j">Optische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield></datafield></record></collection>
|
author |
Wang, Shiling |
spellingShingle |
Wang, Shiling ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Optical components misc Defect detection misc Dark field microscopic imaging misc Sub-region and sub-aperture scanning Scanning strategy for surface defects evaluation of large fine optical components |
authorStr |
Wang, Shiling |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319950689 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2545 |
topic_title |
530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Scanning strategy for surface defects evaluation of large fine optical components Optical components Defect detection Dark field microscopic imaging Sub-region and sub-aperture scanning |
topic |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Optical components misc Defect detection misc Dark field microscopic imaging misc Sub-region and sub-aperture scanning |
topic_unstemmed |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Optical components misc Defect detection misc Dark field microscopic imaging misc Sub-region and sub-aperture scanning |
topic_browse |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Optical components misc Defect detection misc Dark field microscopic imaging misc Sub-region and sub-aperture scanning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optics & laser technology |
hierarchy_parent_id |
319950689 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Optics & laser technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 |
title |
Scanning strategy for surface defects evaluation of large fine optical components |
ctrlnum |
(DE-627)ELV009686495 (ELSEVIER)S0030-3992(22)00629-6 |
title_full |
Scanning strategy for surface defects evaluation of large fine optical components |
author_sort |
Wang, Shiling |
journal |
Optics & laser technology |
journalStr |
Optics & laser technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Shiling Sun, Huanyu Hu, Xiaobo Zou, Sirui Guo, Shiwei Wang, Hongxia Sun, Feng Cheng, Xinglei Zhang, Junan Liu, Dong |
container_volume |
156 |
class |
530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Shiling |
doi_str_mv |
10.1016/j.optlastec.2022.108473 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
scanning strategy for surface defects evaluation of large fine optical components |
title_auth |
Scanning strategy for surface defects evaluation of large fine optical components |
abstract |
Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. |
abstractGer |
Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. |
abstract_unstemmed |
Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Scanning strategy for surface defects evaluation of large fine optical components |
remote_bool |
true |
author2 |
Sun, Huanyu Hu, Xiaobo Zou, Sirui Guo, Shiwei Wang, Hongxia Sun, Feng Cheng, Xinglei Zhang, Junan Liu, Dong |
author2Str |
Sun, Huanyu Hu, Xiaobo Zou, Sirui Guo, Shiwei Wang, Hongxia Sun, Feng Cheng, Xinglei Zhang, Junan Liu, Dong |
ppnlink |
319950689 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.optlastec.2022.108473 |
up_date |
2024-07-07T00:00:40.083Z |
_version_ |
1803876240022568960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009686495</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlastec.2022.108473</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009686495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-3992(22)00629-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shiling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning strategy for surface defects evaluation of large fine optical components</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects, such as scratches and digs etc., play an important role in quality control of fine optical components. Dark field microscopic imaging has become one of the most commonly means for surface defects detection. However, the imaging field of view is very limited compared with the increasing aperture of the test parts and sub-aperture scanning is usually employed to increase the detection aperture while ensuring the system resolution. The problems that classic “S” Shape Sub-Aperture (SSSA) strategy faces are the high positioning accuracy requirement for the translation stage and the time-consuming processing of huge number of sub-apertures. Herein, a Sub-Region and Sub-Aperture (SRSA) scanning strategy is proposed. It divides the aperture of test part into sub-regions. Within each sub-region, classic scanning strategies and stitching methods can be employed the same time when next sub-region is being scanned. The whole aperture of the test part can be obtained when all the sub-regions are stitched together. Thus the positioning accuracy requirement of translation stage is reduced from the whole aperture to a sub-region while most of the sub-aperture stitching and processing time is covered within the scanning process. The relationship between the positioning accuracy of translation stage and the sizes of sub-aperture/sub-region is discussed in detail. Comparison experiments show the superiority of the proposed SRSA scanning strategy with which large-aperture, high precision scanning detection of large-aperture optical components can be accomplished efficiently and economically.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dark field microscopic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sub-region and sub-aperture scanning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Huanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Xiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Sirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Shiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Xinglei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optics & laser technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1971</subfield><subfield code="g">156</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319950689</subfield><subfield code="w">(DE-600)2000654-8</subfield><subfield code="w">(DE-576)255266731</subfield><subfield code="x">1879-2545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.75</subfield><subfield code="j">Optische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield></datafield></record></collection>
|
score |
7.400402 |