Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries
Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion...
Ausführliche Beschreibung
Autor*in: |
Guo, Changxiang [verfasserIn] Cao, Yafei [verfasserIn] Li, Junfeng [verfasserIn] Li, Haipeng [verfasserIn] Kumar Arumugam, Senthil [verfasserIn] Oleksandr, Sokolskyi [verfasserIn] Chen, Fei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied energy - Amsterdam [u.a.] : Elsevier Science, 1975, 323 |
---|---|
Übergeordnetes Werk: |
volume:323 |
DOI / URN: |
10.1016/j.apenergy.2022.119571 |
---|
Katalog-ID: |
ELV009694137 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009694137 | ||
003 | DE-627 | ||
005 | 20230606133809.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apenergy.2022.119571 |2 doi | |
035 | |a (DE-627)ELV009694137 | ||
035 | |a (ELSEVIER)S0306-2619(22)00881-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 52.50 |2 bkl | ||
100 | 1 | |a Guo, Changxiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. | ||
650 | 4 | |a Nonflammable polymers | |
650 | 4 | |a Self-healing electrolytes | |
650 | 4 | |a Flexible solid electrolytes | |
650 | 4 | |a Lithium metal batteries | |
700 | 1 | |a Cao, Yafei |e verfasserin |4 aut | |
700 | 1 | |a Li, Junfeng |e verfasserin |4 aut | |
700 | 1 | |a Li, Haipeng |e verfasserin |4 aut | |
700 | 1 | |a Kumar Arumugam, Senthil |e verfasserin |4 aut | |
700 | 1 | |a Oleksandr, Sokolskyi |e verfasserin |4 aut | |
700 | 1 | |a Chen, Fei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 323 |h Online-Ressource |w (DE-627)320406709 |w (DE-600)2000772-3 |w (DE-576)256140251 |x 1872-9118 |7 nnns |
773 | 1 | 8 | |g volume:323 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.50 |j Energietechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 323 |
author_variant |
c g cg y c yc j l jl h l hl a s k as ask s o so f c fc |
---|---|
matchkey_str |
article:18729118:2022----::ovnfegenyteionnlmaladefelnplmrimlcrlt |
hierarchy_sort_str |
2022 |
bklnumber |
52.50 |
publishDate |
2022 |
allfields |
10.1016/j.apenergy.2022.119571 doi (DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Guo, Changxiang verfasserin aut Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries Cao, Yafei verfasserin aut Li, Junfeng verfasserin aut Li, Haipeng verfasserin aut Kumar Arumugam, Senthil verfasserin aut Oleksandr, Sokolskyi verfasserin aut Chen, Fei verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 323 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:323 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines VZ AR 323 |
spelling |
10.1016/j.apenergy.2022.119571 doi (DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Guo, Changxiang verfasserin aut Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries Cao, Yafei verfasserin aut Li, Junfeng verfasserin aut Li, Haipeng verfasserin aut Kumar Arumugam, Senthil verfasserin aut Oleksandr, Sokolskyi verfasserin aut Chen, Fei verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 323 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:323 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines VZ AR 323 |
allfields_unstemmed |
10.1016/j.apenergy.2022.119571 doi (DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Guo, Changxiang verfasserin aut Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries Cao, Yafei verfasserin aut Li, Junfeng verfasserin aut Li, Haipeng verfasserin aut Kumar Arumugam, Senthil verfasserin aut Oleksandr, Sokolskyi verfasserin aut Chen, Fei verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 323 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:323 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines VZ AR 323 |
allfieldsGer |
10.1016/j.apenergy.2022.119571 doi (DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Guo, Changxiang verfasserin aut Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries Cao, Yafei verfasserin aut Li, Junfeng verfasserin aut Li, Haipeng verfasserin aut Kumar Arumugam, Senthil verfasserin aut Oleksandr, Sokolskyi verfasserin aut Chen, Fei verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 323 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:323 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines VZ AR 323 |
allfieldsSound |
10.1016/j.apenergy.2022.119571 doi (DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Guo, Changxiang verfasserin aut Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries Cao, Yafei verfasserin aut Li, Junfeng verfasserin aut Li, Haipeng verfasserin aut Kumar Arumugam, Senthil verfasserin aut Oleksandr, Sokolskyi verfasserin aut Chen, Fei verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 323 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:323 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.50 Energietechnik: Allgemeines VZ AR 323 |
language |
English |
source |
Enthalten in Applied energy 323 volume:323 |
sourceStr |
Enthalten in Applied energy 323 volume:323 |
format_phy_str_mv |
Article |
bklname |
Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Applied energy |
authorswithroles_txt_mv |
Guo, Changxiang @@aut@@ Cao, Yafei @@aut@@ Li, Junfeng @@aut@@ Li, Haipeng @@aut@@ Kumar Arumugam, Senthil @@aut@@ Oleksandr, Sokolskyi @@aut@@ Chen, Fei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320406709 |
dewey-sort |
3620 |
id |
ELV009694137 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009694137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2022.119571</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009694137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(22)00881-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Changxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonflammable polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-healing electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible solid electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium metal batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yafei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar Arumugam, Senthil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oleksandr, Sokolskyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">323</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">323</subfield></datafield></record></collection>
|
author |
Guo, Changxiang |
spellingShingle |
Guo, Changxiang ddc 620 bkl 52.50 misc Nonflammable polymers misc Self-healing electrolytes misc Flexible solid electrolytes misc Lithium metal batteries Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
authorStr |
Guo, Changxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406709 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-9118 |
topic_title |
620 VZ 52.50 bkl Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries Nonflammable polymers Self-healing electrolytes Flexible solid electrolytes Lithium metal batteries |
topic |
ddc 620 bkl 52.50 misc Nonflammable polymers misc Self-healing electrolytes misc Flexible solid electrolytes misc Lithium metal batteries |
topic_unstemmed |
ddc 620 bkl 52.50 misc Nonflammable polymers misc Self-healing electrolytes misc Flexible solid electrolytes misc Lithium metal batteries |
topic_browse |
ddc 620 bkl 52.50 misc Nonflammable polymers misc Self-healing electrolytes misc Flexible solid electrolytes misc Lithium metal batteries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied energy |
hierarchy_parent_id |
320406709 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Applied energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 |
title |
Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
ctrlnum |
(DE-627)ELV009694137 (ELSEVIER)S0306-2619(22)00881-9 |
title_full |
Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
author_sort |
Guo, Changxiang |
journal |
Applied energy |
journalStr |
Applied energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Guo, Changxiang Cao, Yafei Li, Junfeng Li, Haipeng Kumar Arumugam, Senthil Oleksandr, Sokolskyi Chen, Fei |
container_volume |
323 |
class |
620 VZ 52.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Guo, Changxiang |
doi_str_mv |
10.1016/j.apenergy.2022.119571 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
title_auth |
Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
abstract |
Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. |
abstractGer |
Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. |
abstract_unstemmed |
Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries |
remote_bool |
true |
author2 |
Cao, Yafei Li, Junfeng Li, Haipeng Kumar Arumugam, Senthil Oleksandr, Sokolskyi Chen, Fei |
author2Str |
Cao, Yafei Li, Junfeng Li, Haipeng Kumar Arumugam, Senthil Oleksandr, Sokolskyi Chen, Fei |
ppnlink |
320406709 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apenergy.2022.119571 |
up_date |
2024-07-07T00:02:09.095Z |
_version_ |
1803876333357367296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009694137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2022.119571</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009694137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(22)00881-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Changxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonflammable polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-healing electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible solid electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium metal batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yafei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haipeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar Arumugam, Senthil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oleksandr, Sokolskyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">323</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">323</subfield></datafield></record></collection>
|
score |
7.400996 |