An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills
Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with tim...
Ausführliche Beschreibung
Autor*in: |
Jiang, Sheng-Long [verfasserIn] Li, Weigang [verfasserIn] Zhang, Xuejun [verfasserIn] Xu, Chuanpei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & industrial engineering - Amsterdam [u.a.] : Elsevier Science, 1976, 172 |
---|---|
Übergeordnetes Werk: |
volume:172 |
DOI / URN: |
10.1016/j.cie.2022.108561 |
---|
Katalog-ID: |
ELV00971605X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV00971605X | ||
003 | DE-627 | ||
005 | 20230530142007.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cie.2022.108561 |2 doi | |
035 | |a (DE-627)ELV00971605X | ||
035 | |a (ELSEVIER)S0360-8352(22)00564-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 85.35 |2 bkl | ||
084 | |a 54.80 |2 bkl | ||
100 | 1 | |a Jiang, Sheng-Long |e verfasserin |4 aut | |
245 | 1 | 0 | |a An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. | ||
650 | 4 | |a Hot rolling | |
650 | 4 | |a Multi-objective scheduling | |
650 | 4 | |a Vehicle routing problem | |
650 | 4 | |a Pareto local search | |
650 | 4 | |a Neighborhood exploration | |
700 | 1 | |a Li, Weigang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xuejun |e verfasserin |4 aut | |
700 | 1 | |a Xu, Chuanpei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & industrial engineering |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 172 |h Online-Ressource |w (DE-627)320606899 |w (DE-600)2020859-5 |w (DE-576)259271780 |x 0360-8352 |7 nnns |
773 | 1 | 8 | |g volume:172 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 85.35 |j Fertigung |q VZ |
936 | b | k | |a 54.80 |j Angewandte Informatik |q VZ |
951 | |a AR | ||
952 | |d 172 |
author_variant |
s l j slj w l wl x z xz c x cx |
---|---|
matchkey_str |
article:03608352:2022----::nmrvdaeooasacfrovnbojcieceuigr |
hierarchy_sort_str |
2022 |
bklnumber |
85.35 54.80 |
publishDate |
2022 |
allfields |
10.1016/j.cie.2022.108561 doi (DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Jiang, Sheng-Long verfasserin aut An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration Li, Weigang verfasserin aut Zhang, Xuejun verfasserin aut Xu, Chuanpei verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 172 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 172 |
spelling |
10.1016/j.cie.2022.108561 doi (DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Jiang, Sheng-Long verfasserin aut An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration Li, Weigang verfasserin aut Zhang, Xuejun verfasserin aut Xu, Chuanpei verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 172 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 172 |
allfields_unstemmed |
10.1016/j.cie.2022.108561 doi (DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Jiang, Sheng-Long verfasserin aut An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration Li, Weigang verfasserin aut Zhang, Xuejun verfasserin aut Xu, Chuanpei verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 172 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 172 |
allfieldsGer |
10.1016/j.cie.2022.108561 doi (DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Jiang, Sheng-Long verfasserin aut An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration Li, Weigang verfasserin aut Zhang, Xuejun verfasserin aut Xu, Chuanpei verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 172 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 172 |
allfieldsSound |
10.1016/j.cie.2022.108561 doi (DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Jiang, Sheng-Long verfasserin aut An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration Li, Weigang verfasserin aut Zhang, Xuejun verfasserin aut Xu, Chuanpei verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 172 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 172 |
language |
English |
source |
Enthalten in Computers & industrial engineering 172 volume:172 |
sourceStr |
Enthalten in Computers & industrial engineering 172 volume:172 |
format_phy_str_mv |
Article |
bklname |
Fertigung Angewandte Informatik |
institution |
findex.gbv.de |
topic_facet |
Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & industrial engineering |
authorswithroles_txt_mv |
Jiang, Sheng-Long @@aut@@ Li, Weigang @@aut@@ Zhang, Xuejun @@aut@@ Xu, Chuanpei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320606899 |
dewey-sort |
14 |
id |
ELV00971605X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV00971605X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530142007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2022.108561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00971605X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-8352(22)00564-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Sheng-Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot rolling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle routing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pareto local search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neighborhood exploration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuejun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Chuanpei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">172</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320606899</subfield><subfield code="w">(DE-600)2020859-5</subfield><subfield code="w">(DE-576)259271780</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield></datafield></record></collection>
|
author |
Jiang, Sheng-Long |
spellingShingle |
Jiang, Sheng-Long ddc 004 bkl 85.35 bkl 54.80 misc Hot rolling misc Multi-objective scheduling misc Vehicle routing problem misc Pareto local search misc Neighborhood exploration An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
authorStr |
Jiang, Sheng-Long |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320606899 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0360-8352 |
topic_title |
004 VZ 85.35 bkl 54.80 bkl An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills Hot rolling Multi-objective scheduling Vehicle routing problem Pareto local search Neighborhood exploration |
topic |
ddc 004 bkl 85.35 bkl 54.80 misc Hot rolling misc Multi-objective scheduling misc Vehicle routing problem misc Pareto local search misc Neighborhood exploration |
topic_unstemmed |
ddc 004 bkl 85.35 bkl 54.80 misc Hot rolling misc Multi-objective scheduling misc Vehicle routing problem misc Pareto local search misc Neighborhood exploration |
topic_browse |
ddc 004 bkl 85.35 bkl 54.80 misc Hot rolling misc Multi-objective scheduling misc Vehicle routing problem misc Pareto local search misc Neighborhood exploration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & industrial engineering |
hierarchy_parent_id |
320606899 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & industrial engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 |
title |
An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
ctrlnum |
(DE-627)ELV00971605X (ELSEVIER)S0360-8352(22)00564-2 |
title_full |
An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
author_sort |
Jiang, Sheng-Long |
journal |
Computers & industrial engineering |
journalStr |
Computers & industrial engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Jiang, Sheng-Long Li, Weigang Zhang, Xuejun Xu, Chuanpei |
container_volume |
172 |
class |
004 VZ 85.35 bkl 54.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang, Sheng-Long |
doi_str_mv |
10.1016/j.cie.2022.108561 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
an improved pareto local search for solving bi-objective scheduling problems in hot rolling mills |
title_auth |
An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
abstract |
Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. |
abstractGer |
Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. |
abstract_unstemmed |
Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills |
remote_bool |
true |
author2 |
Li, Weigang Zhang, Xuejun Xu, Chuanpei |
author2Str |
Li, Weigang Zhang, Xuejun Xu, Chuanpei |
ppnlink |
320606899 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cie.2022.108561 |
up_date |
2024-07-07T00:06:36.624Z |
_version_ |
1803876613882904576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV00971605X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530142007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2022.108561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00971605X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-8352(22)00564-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Sheng-Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hot rolling scheduling is a complex decision-making optimization problem in the production management of the iron and steel industry. Comprehensively considering temporal and technical constraints of hot rolling production, we formulate a prize-collecting capacitated vehicle routing problem with time windows (PC-CVRPTW) involving special constraints and multiple objectives. Furthermore, this paper develops a Pareto local search (PLS)-based solving algorithm via leveraging problem-specific properties and implements three improvement mechanisms: (1) solution initialization with a greedy strategy; (2) promising solution selection with optimistic hypervolume contribution; (3) hybrid neighborhood exploration integrated variable neighborhood search with constraint programming. To validate the proposed method, computational experiments are conducted on a set of randomly synthetic and realistic industrial instances. The results compared with other variants of PLS and state-of-art algorithms demonstrate that the improved PLS algorithm is effective and can provide promising solutions for bi-objective hot rolling scheduling problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot rolling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle routing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pareto local search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neighborhood exploration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuejun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Chuanpei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">172</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320606899</subfield><subfield code="w">(DE-600)2020859-5</subfield><subfield code="w">(DE-576)259271780</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield></datafield></record></collection>
|
score |
7.401311 |