Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment
Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other count...
Ausführliche Beschreibung
Autor*in: |
Simla, Tomasz [verfasserIn] Gazda, Wiesław [verfasserIn] Stanek, Wojciech [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of hydrogen energy - New York, NY [u.a.] : Elsevier, 1976, 48 |
---|---|
Übergeordnetes Werk: |
volume:48 |
DOI / URN: |
10.1016/j.ijhydene.2023.01.331 |
---|
Katalog-ID: |
ELV009746439 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV009746439 | ||
003 | DE-627 | ||
005 | 20230530144957.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2023.01.331 |2 doi | |
035 | |a (DE-627)ELV009746439 | ||
035 | |a (ELSEVIER)S0360-3199(23)00614-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Simla, Tomasz |e verfasserin |0 (orcid)0000-0002-2740-1942 |4 aut | |
245 | 1 | 0 | |a Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. | ||
650 | 4 | |a Electrolysis | |
650 | 4 | |a Energy storage | |
650 | 4 | |a Hydrogen | |
650 | 4 | |a Photovoltaics | |
650 | 4 | |a Renewable energy | |
650 | 4 | |a Thermo-ecological cost | |
700 | 1 | |a Gazda, Wiesław |e verfasserin |4 aut | |
700 | 1 | |a Stanek, Wojciech |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of hydrogen energy |d New York, NY [u.a.] : Elsevier, 1976 |g 48 |h Online-Ressource |w (DE-627)301511357 |w (DE-600)1484487-4 |w (DE-576)096806397 |x 1879-3487 |7 nnns |
773 | 1 | 8 | |g volume:48 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 48 |
author_variant |
t s ts w g wg w s ws |
---|---|
matchkey_str |
article:18793487:2023----::nryrsmrsuightvlacoepatnhdoecmutoegneega |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.ijhydene.2023.01.331 doi (DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Simla, Tomasz verfasserin (orcid)0000-0002-2740-1942 aut Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost Gazda, Wiesław verfasserin aut Stanek, Wojciech verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
spelling |
10.1016/j.ijhydene.2023.01.331 doi (DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Simla, Tomasz verfasserin (orcid)0000-0002-2740-1942 aut Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost Gazda, Wiesław verfasserin aut Stanek, Wojciech verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfields_unstemmed |
10.1016/j.ijhydene.2023.01.331 doi (DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Simla, Tomasz verfasserin (orcid)0000-0002-2740-1942 aut Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost Gazda, Wiesław verfasserin aut Stanek, Wojciech verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsGer |
10.1016/j.ijhydene.2023.01.331 doi (DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Simla, Tomasz verfasserin (orcid)0000-0002-2740-1942 aut Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost Gazda, Wiesław verfasserin aut Stanek, Wojciech verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsSound |
10.1016/j.ijhydene.2023.01.331 doi (DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Simla, Tomasz verfasserin (orcid)0000-0002-2740-1942 aut Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost Gazda, Wiesław verfasserin aut Stanek, Wojciech verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
language |
English |
source |
Enthalten in International journal of hydrogen energy 48 volume:48 |
sourceStr |
Enthalten in International journal of hydrogen energy 48 volume:48 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
International journal of hydrogen energy |
authorswithroles_txt_mv |
Simla, Tomasz @@aut@@ Gazda, Wiesław @@aut@@ Stanek, Wojciech @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
301511357 |
dewey-sort |
3660 |
id |
ELV009746439 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009746439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530144957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.01.331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009746439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)00614-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simla, Tomasz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2740-1942</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-ecological cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gazda, Wiesław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
author |
Simla, Tomasz |
spellingShingle |
Simla, Tomasz ddc 660 bkl 52.56 misc Electrolysis misc Energy storage misc Hydrogen misc Photovoltaics misc Renewable energy misc Thermo-ecological cost Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
authorStr |
Simla, Tomasz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511357 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3487 |
topic_title |
660 620 VZ 52.56 bkl Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment Electrolysis Energy storage Hydrogen Photovoltaics Renewable energy Thermo-ecological cost |
topic |
ddc 660 bkl 52.56 misc Electrolysis misc Energy storage misc Hydrogen misc Photovoltaics misc Renewable energy misc Thermo-ecological cost |
topic_unstemmed |
ddc 660 bkl 52.56 misc Electrolysis misc Energy storage misc Hydrogen misc Photovoltaics misc Renewable energy misc Thermo-ecological cost |
topic_browse |
ddc 660 bkl 52.56 misc Electrolysis misc Energy storage misc Hydrogen misc Photovoltaics misc Renewable energy misc Thermo-ecological cost |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of hydrogen energy |
hierarchy_parent_id |
301511357 |
dewey-tens |
660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
International journal of hydrogen energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 |
title |
Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
ctrlnum |
(DE-627)ELV009746439 (ELSEVIER)S0360-3199(23)00614-6 |
title_full |
Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
author_sort |
Simla, Tomasz |
journal |
International journal of hydrogen energy |
journalStr |
International journal of hydrogen energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Simla, Tomasz Gazda, Wiesław Stanek, Wojciech |
container_volume |
48 |
class |
660 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Simla, Tomasz |
doi_str_mv |
10.1016/j.ijhydene.2023.01.331 |
normlink |
(ORCID)0000-0002-2740-1942 |
normlink_prefix_str_mv |
(orcid)0000-0002-2740-1942 |
dewey-full |
660 620 |
author2-role |
verfasserin |
title_sort |
energy prosumerism using photovoltaic power plant and hydrogen combustion engine: energy and thermo-ecological assessment |
title_auth |
Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
abstract |
Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. |
abstractGer |
Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. |
abstract_unstemmed |
Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment |
remote_bool |
true |
author2 |
Gazda, Wiesław Stanek, Wojciech |
author2Str |
Gazda, Wiesław Stanek, Wojciech |
ppnlink |
301511357 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijhydene.2023.01.331 |
up_date |
2024-07-07T00:12:39.067Z |
_version_ |
1803876993931935744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009746439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530144957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.01.331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009746439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)00614-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simla, Tomasz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2740-1942</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy prosumerism using photovoltaic power plant and hydrogen combustion engine: Energy and thermo-ecological assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Renewable Energy Sources (RES) represent an attractive way to save natural resources and improve the overall impact of power systems on the environment. A continuous increase of share of RES in national energy mixes is observed, and due to the energy policy of the European Union and many other countries, further increase is expected. A disadvantage of RES is their random, weather-dependent availability, which requires energy storage. A promising method of integrating RES with the energy system is the use of hydrogen as an energy carrier (e.g. coupling RES with electrolyzers in order to directly use the renewable electricity for production of hydrogen). In the present work, a simulation of cooperation of a photovoltaic power plant with a gas piston engine fueled by hydrogen was performed, with and without the presence of energy storage. The aim of the analysis is twofold. First, the “compensation losses” due to forced part-load operation of the engine coupled with RES are evaluated and compared with “storage losses” resulting from the thermodynamic imperfectness of the storage; this allows to calculate the minimum round-trip efficiency of storage required for positive energy effect. The “compensation losses” have been determined to be of the order of magnitude of 2%, and the minimum round-trip efficiency of storage to be at the level of 85%. Second, a thermo-ecological analysis was carried out to determine the impact of the source of hydrogen on the overall ecological effectiveness of the system. Contrary to the commonly used measure of “energy efficiency” describing a local balance boundary, thermo-ecological cost (TEC) evaluates the consumption of non-renewable exergy within a global balance boundary. The analysis confirmed that comparing various hydrogen production methods (especially renewable and non-renewable) in terms of local energy efficiency is inadequate, because it does not tell much about their sustainability. For a hydrogen energy system basing on the water electrolysis – hydrogen transport/storage – combustion in a gas piston engine pathway to be considered sustainable, the input electricity to the electrolysis process should be characterized by TEC lower than ∼0.15 J∗/J, a value which even some renewable energy sources fail to achieve.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photovoltaics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-ecological cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gazda, Wiesław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Wojciech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
score |
7.401038 |