A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020
The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strat...
Ausführliche Beschreibung
Autor*in: |
Liu, Liang [verfasserIn] Yang, Yirui [verfasserIn] Liu, Shu [verfasserIn] Gong, Xiujuan [verfasserIn] Zhao, Yuting [verfasserIn] Jin, Ruifeng [verfasserIn] Duan, Hongyu [verfasserIn] Jiang, Pan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ecological indicators - Amsterdam [u.a.] : Elsevier Science, 2001, 150 |
---|---|
Übergeordnetes Werk: |
volume:150 |
DOI / URN: |
10.1016/j.ecolind.2023.110214 |
---|
Katalog-ID: |
ELV009758712 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009758712 | ||
003 | DE-627 | ||
005 | 20231205153926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2023.110214 |2 doi | |
035 | |a (DE-627)ELV009758712 | ||
035 | |a (ELSEVIER)S1470-160X(23)00356-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 630 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Liu, Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. | ||
650 | 4 | |a Green growth efficiency | |
650 | 4 | |a three-stage DEA | |
650 | 4 | |a Yangtze River Economic Belt | |
650 | 4 | |a Yellow River Basin | |
700 | 1 | |a Yang, Yirui |e verfasserin |4 aut | |
700 | 1 | |a Liu, Shu |e verfasserin |4 aut | |
700 | 1 | |a Gong, Xiujuan |e verfasserin |0 (orcid)0000-0002-7267-4640 |4 aut | |
700 | 1 | |a Zhao, Yuting |e verfasserin |4 aut | |
700 | 1 | |a Jin, Ruifeng |e verfasserin |4 aut | |
700 | 1 | |a Duan, Hongyu |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Pan |e verfasserin |0 (orcid)0000-0001-6506-8805 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ecological indicators |d Amsterdam [u.a.] : Elsevier Science, 2001 |g 150 |h Online-Ressource |w (DE-627)338074163 |w (DE-600)2063587-4 |w (DE-576)259272388 |x 1872-7034 |7 nnns |
773 | 1 | 8 | |g volume:150 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 150 |
author_variant |
l l ll y y yy s l sl x g xg y z yz r j rj h d hd p j pj |
---|---|
matchkey_str |
article:18727034:2023----::cmaaietdogenrwhfiinynagzrvrcnmcetnylo |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.ecolind.2023.110214 doi (DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 DE-627 ger DE-627 rda eng 570 630 VZ BIODIV DE-30 fid Liu, Liang verfasserin aut A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin Yang, Yirui verfasserin aut Liu, Shu verfasserin aut Gong, Xiujuan verfasserin (orcid)0000-0002-7267-4640 aut Zhao, Yuting verfasserin aut Jin, Ruifeng verfasserin aut Duan, Hongyu verfasserin aut Jiang, Pan verfasserin (orcid)0000-0001-6506-8805 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 150 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 150 |
spelling |
10.1016/j.ecolind.2023.110214 doi (DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 DE-627 ger DE-627 rda eng 570 630 VZ BIODIV DE-30 fid Liu, Liang verfasserin aut A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin Yang, Yirui verfasserin aut Liu, Shu verfasserin aut Gong, Xiujuan verfasserin (orcid)0000-0002-7267-4640 aut Zhao, Yuting verfasserin aut Jin, Ruifeng verfasserin aut Duan, Hongyu verfasserin aut Jiang, Pan verfasserin (orcid)0000-0001-6506-8805 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 150 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 150 |
allfields_unstemmed |
10.1016/j.ecolind.2023.110214 doi (DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 DE-627 ger DE-627 rda eng 570 630 VZ BIODIV DE-30 fid Liu, Liang verfasserin aut A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin Yang, Yirui verfasserin aut Liu, Shu verfasserin aut Gong, Xiujuan verfasserin (orcid)0000-0002-7267-4640 aut Zhao, Yuting verfasserin aut Jin, Ruifeng verfasserin aut Duan, Hongyu verfasserin aut Jiang, Pan verfasserin (orcid)0000-0001-6506-8805 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 150 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 150 |
allfieldsGer |
10.1016/j.ecolind.2023.110214 doi (DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 DE-627 ger DE-627 rda eng 570 630 VZ BIODIV DE-30 fid Liu, Liang verfasserin aut A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin Yang, Yirui verfasserin aut Liu, Shu verfasserin aut Gong, Xiujuan verfasserin (orcid)0000-0002-7267-4640 aut Zhao, Yuting verfasserin aut Jin, Ruifeng verfasserin aut Duan, Hongyu verfasserin aut Jiang, Pan verfasserin (orcid)0000-0001-6506-8805 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 150 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 150 |
allfieldsSound |
10.1016/j.ecolind.2023.110214 doi (DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 DE-627 ger DE-627 rda eng 570 630 VZ BIODIV DE-30 fid Liu, Liang verfasserin aut A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin Yang, Yirui verfasserin aut Liu, Shu verfasserin aut Gong, Xiujuan verfasserin (orcid)0000-0002-7267-4640 aut Zhao, Yuting verfasserin aut Jin, Ruifeng verfasserin aut Duan, Hongyu verfasserin aut Jiang, Pan verfasserin (orcid)0000-0001-6506-8805 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 150 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 150 |
language |
English |
source |
Enthalten in Ecological indicators 150 volume:150 |
sourceStr |
Enthalten in Ecological indicators 150 volume:150 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Ecological indicators |
authorswithroles_txt_mv |
Liu, Liang @@aut@@ Yang, Yirui @@aut@@ Liu, Shu @@aut@@ Gong, Xiujuan @@aut@@ Zhao, Yuting @@aut@@ Jin, Ruifeng @@aut@@ Duan, Hongyu @@aut@@ Jiang, Pan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
dewey-sort |
3570 |
id |
ELV009758712 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009758712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2023.110214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009758712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(23)00356-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green growth efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-stage DEA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yangtze River Economic Belt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yellow River Basin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Xiujuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7267-4640</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Ruifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Hongyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6506-8805</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">150</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield></datafield></record></collection>
|
author |
Liu, Liang |
spellingShingle |
Liu, Liang ddc 570 fid BIODIV misc Green growth efficiency misc three-stage DEA misc Yangtze River Economic Belt misc Yellow River Basin A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
authorStr |
Liu, Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7034 |
topic_title |
570 630 VZ BIODIV DE-30 fid A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 Green growth efficiency three-stage DEA Yangtze River Economic Belt Yellow River Basin |
topic |
ddc 570 fid BIODIV misc Green growth efficiency misc three-stage DEA misc Yangtze River Economic Belt misc Yellow River Basin |
topic_unstemmed |
ddc 570 fid BIODIV misc Green growth efficiency misc three-stage DEA misc Yangtze River Economic Belt misc Yellow River Basin |
topic_browse |
ddc 570 fid BIODIV misc Green growth efficiency misc three-stage DEA misc Yangtze River Economic Belt misc Yellow River Basin |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological indicators |
hierarchy_parent_id |
338074163 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture |
hierarchy_top_title |
Ecological indicators |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 |
title |
A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
ctrlnum |
(DE-627)ELV009758712 (ELSEVIER)S1470-160X(23)00356-4 |
title_full |
A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
author_sort |
Liu, Liang |
journal |
Ecological indicators |
journalStr |
Ecological indicators |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Liang Yang, Yirui Liu, Shu Gong, Xiujuan Zhao, Yuting Jin, Ruifeng Duan, Hongyu Jiang, Pan |
container_volume |
150 |
class |
570 630 VZ BIODIV DE-30 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Liang |
doi_str_mv |
10.1016/j.ecolind.2023.110214 |
normlink |
(ORCID)0000-0002-7267-4640 (ORCID)0000-0001-6506-8805 |
normlink_prefix_str_mv |
(orcid)0000-0002-7267-4640 (orcid)0000-0001-6506-8805 |
dewey-full |
570 630 |
author2-role |
verfasserin |
title_sort |
a comparative study of green growth efficiency in yangtze river economic belt and yellow river basin between 2010 and 2020 |
title_auth |
A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
abstract |
The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. |
abstractGer |
The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. |
abstract_unstemmed |
The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020 |
remote_bool |
true |
author2 |
Yang, Yirui Liu, Shu Gong, Xiujuan Zhao, Yuting Jin, Ruifeng Duan, Hongyu Jiang, Pan |
author2Str |
Yang, Yirui Liu, Shu Gong, Xiujuan Zhao, Yuting Jin, Ruifeng Duan, Hongyu Jiang, Pan |
ppnlink |
338074163 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2023.110214 |
up_date |
2024-07-07T00:15:12.966Z |
_version_ |
1803877155306733568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009758712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2023.110214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009758712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(23)00356-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Yangtze River Economic Belt and the Yellow River Basin are important economic regions and ecological barriers in China. Promoting the development of the Yangtze River Economic Belt and promoting ecological protection and high-quality development in the Yellow River Basin are major regional strategies implemented by the Chinese government, and the green growth of the two regions is important for the high-quality sustainable development of the whole China. To investigate the regional differences in green growth efficiency of the same type of geographical units, this paper measures the green growth efficiency and decomposition indicators of the Yangtze River Economic Belt and the Yellow River Basin from 2010 to 2020 using a three-stage DEA model and the Malmquist index method and establishes a panel Tobit model to identify the influencing factors of green growth efficiency. The results show that: ①After using the three-stage DEA model to remove the influence of external environment and stochastic factors, the mean values of green growth efficiency of Yangtze River Economic Zone and Yellow River Basin from 2010 to 2020 are 0.996 and 1.089, respectively. The change of green growth efficiency of Yangtze River Economic Zone is slightly higher than that of Yellow River Basin. ②The Malmquist indexes of the Yangtze River Economic Belt and the Yellow River Basin have generally increased, with the Technological Progress Index, which characterizes technological innovation, being the main endogenous driver of green growth efficiency in the Yellow River Basin, while the technical efficiency index, which characterizes factor mix and management level, is more significant in the Yangtze River Economic Belt. ③The Tobit model regression results show that the factors influencing green growth efficiency are also different in the two regions. Among them, the urbanization rate has a significantly positive effect on the two regions, while the effects of environmental regulation and research intensity are not significant. External openness has a suppressive effect on green growth efficiency in the Yangtze River Economic Belt, while the level of financial development and human capital negatively affect green growth efficiency in the Yellow River Basin. Therefore, green development in the new era should pay attention to the differences between different regions, and make appropriate development policies according to the local conditions of the development status of different regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green growth efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-stage DEA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yangtze River Economic Belt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yellow River Basin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Xiujuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7267-4640</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Ruifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Hongyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6506-8805</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">150</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield></datafield></record></collection>
|
score |
7.400467 |