Metal-organic framework–derived NiCo
Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemi...
Ausführliche Beschreibung
Autor*in: |
Wu, Wenling [verfasserIn] Liu, Tiantian [verfasserIn] Diwu, Jiahao [verfasserIn] Li, Chenguang [verfasserIn] Zhu, Jianfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of alloys and compounds - Lausanne : Elsevier, 1991, 954 |
---|---|
Übergeordnetes Werk: |
volume:954 |
DOI / URN: |
10.1016/j.jallcom.2023.170213 |
---|
Katalog-ID: |
ELV00976075X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV00976075X | ||
003 | DE-627 | ||
005 | 20230530150233.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2023.170213 |2 doi | |
035 | |a (DE-627)ELV00976075X | ||
035 | |a (ELSEVIER)S0925-8388(23)01516-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 540 |q VZ |
084 | |a 51.54 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Wu, Wenling |e verfasserin |0 (orcid)0000-0002-7974-5544 |4 aut | |
245 | 1 | 0 | |a Metal-organic framework–derived NiCo |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. | ||
650 | 4 | |a MXenes | |
650 | 4 | |a Yolk-shell nanocages | |
650 | 4 | |a MOF | |
650 | 4 | |a Asymmetric supercapacitors | |
700 | 1 | |a Liu, Tiantian |e verfasserin |4 aut | |
700 | 1 | |a Diwu, Jiahao |e verfasserin |4 aut | |
700 | 1 | |a Li, Chenguang |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Jianfeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of alloys and compounds |d Lausanne : Elsevier, 1991 |g 954 |h Online-Ressource |w (DE-627)320504646 |w (DE-600)2012675-X |w (DE-576)098615009 |7 nnns |
773 | 1 | 8 | |g volume:954 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.54 |j Nichteisenmetalle und ihre Legierungen |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
951 | |a AR | ||
952 | |d 954 |
author_variant |
w w ww t l tl j d jd c l cl j z jz |
---|---|
matchkey_str |
wuwenlingliutiantiandiwujiahaolichenguan:2023----:eaogncrmwrdr |
hierarchy_sort_str |
2023 |
bklnumber |
51.54 33.61 35.90 |
publishDate |
2023 |
allfields |
10.1016/j.jallcom.2023.170213 doi (DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Wu, Wenling verfasserin (orcid)0000-0002-7974-5544 aut Metal-organic framework–derived NiCo 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors Liu, Tiantian verfasserin aut Diwu, Jiahao verfasserin aut Li, Chenguang verfasserin aut Zhu, Jianfeng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 954 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:954 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 954 |
spelling |
10.1016/j.jallcom.2023.170213 doi (DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Wu, Wenling verfasserin (orcid)0000-0002-7974-5544 aut Metal-organic framework–derived NiCo 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors Liu, Tiantian verfasserin aut Diwu, Jiahao verfasserin aut Li, Chenguang verfasserin aut Zhu, Jianfeng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 954 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:954 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 954 |
allfields_unstemmed |
10.1016/j.jallcom.2023.170213 doi (DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Wu, Wenling verfasserin (orcid)0000-0002-7974-5544 aut Metal-organic framework–derived NiCo 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors Liu, Tiantian verfasserin aut Diwu, Jiahao verfasserin aut Li, Chenguang verfasserin aut Zhu, Jianfeng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 954 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:954 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 954 |
allfieldsGer |
10.1016/j.jallcom.2023.170213 doi (DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Wu, Wenling verfasserin (orcid)0000-0002-7974-5544 aut Metal-organic framework–derived NiCo 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors Liu, Tiantian verfasserin aut Diwu, Jiahao verfasserin aut Li, Chenguang verfasserin aut Zhu, Jianfeng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 954 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:954 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 954 |
allfieldsSound |
10.1016/j.jallcom.2023.170213 doi (DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Wu, Wenling verfasserin (orcid)0000-0002-7974-5544 aut Metal-organic framework–derived NiCo 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors Liu, Tiantian verfasserin aut Diwu, Jiahao verfasserin aut Li, Chenguang verfasserin aut Zhu, Jianfeng verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 954 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:954 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 954 |
language |
English |
source |
Enthalten in Journal of alloys and compounds 954 volume:954 |
sourceStr |
Enthalten in Journal of alloys and compounds 954 volume:954 |
format_phy_str_mv |
Article |
bklname |
Nichteisenmetalle und ihre Legierungen Festkörperphysik Festkörperchemie |
institution |
findex.gbv.de |
topic_facet |
MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of alloys and compounds |
authorswithroles_txt_mv |
Wu, Wenling @@aut@@ Liu, Tiantian @@aut@@ Diwu, Jiahao @@aut@@ Li, Chenguang @@aut@@ Zhu, Jianfeng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320504646 |
dewey-sort |
3670 |
id |
ELV00976075X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV00976075X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530150233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.170213</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00976075X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)01516-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Wenling</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7974-5544</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal-organic framework–derived NiCo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MXenes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yolk-shell nanocages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric supercapacitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diwu, Jiahao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jianfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">954</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">954</subfield></datafield></record></collection>
|
author |
Wu, Wenling |
spellingShingle |
Wu, Wenling ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc MXenes misc Yolk-shell nanocages misc MOF misc Asymmetric supercapacitors Metal-organic framework–derived NiCo |
authorStr |
Wu, Wenling |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504646 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Metal-organic framework–derived NiCo MXenes Yolk-shell nanocages MOF Asymmetric supercapacitors |
topic |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc MXenes misc Yolk-shell nanocages misc MOF misc Asymmetric supercapacitors |
topic_unstemmed |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc MXenes misc Yolk-shell nanocages misc MOF misc Asymmetric supercapacitors |
topic_browse |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc MXenes misc Yolk-shell nanocages misc MOF misc Asymmetric supercapacitors |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of alloys and compounds |
hierarchy_parent_id |
320504646 |
dewey-tens |
670 - Manufacturing 540 - Chemistry |
hierarchy_top_title |
Journal of alloys and compounds |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 |
title |
Metal-organic framework–derived NiCo |
ctrlnum |
(DE-627)ELV00976075X (ELSEVIER)S0925-8388(23)01516-5 |
title_full |
Metal-organic framework–derived NiCo |
author_sort |
Wu, Wenling |
journal |
Journal of alloys and compounds |
journalStr |
Journal of alloys and compounds |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Wenling Liu, Tiantian Diwu, Jiahao Li, Chenguang Zhu, Jianfeng |
container_volume |
954 |
class |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Wenling |
doi_str_mv |
10.1016/j.jallcom.2023.170213 |
normlink |
(ORCID)0000-0002-7974-5544 |
normlink_prefix_str_mv |
(orcid)0000-0002-7974-5544 |
dewey-full |
670 540 |
author2-role |
verfasserin |
title_sort |
metal-organic framework–derived nico |
title_auth |
Metal-organic framework–derived NiCo |
abstract |
Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. |
abstractGer |
Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. |
abstract_unstemmed |
Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Metal-organic framework–derived NiCo |
remote_bool |
true |
author2 |
Liu, Tiantian Diwu, Jiahao Li, Chenguang Zhu, Jianfeng |
author2Str |
Liu, Tiantian Diwu, Jiahao Li, Chenguang Zhu, Jianfeng |
ppnlink |
320504646 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jallcom.2023.170213 |
up_date |
2024-07-07T00:15:38.976Z |
_version_ |
1803877182580195328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV00976075X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530150233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.170213</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00976075X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)01516-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Wenling</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7974-5544</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal-organic framework–derived NiCo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ti3C2Tx MXene has become an excellent two-dimensional conductive substrate for electrode materials of supercapacitors (SCs) with prominent physicochemical properties. Whereas, due to the lower theoretical specific capacitance and its interlayer agglomerate, the practical application and electrochemical property of Ti3C2Tx have imposed serious restrictions. Herein, metal-organic framework (MOF) derived NiCo2S4 Co3S4 nanocages with superior yolk-shell structure are introduced to anchor on the surface of Ti3C2Tx via ion exchange reaction and electrostatic attraction, forming the distinctive hierarchical structure of NiCo2S4 @Co3S4/Ti3C2Tx composed of NiCo2S4 @Co3S4 yolk-shell nanocages (NiCo2S4 @Co3S4 YSNs) adsorbed on 2D Ti3C2Tx nanosheets. The NiCo2S4 @Co3S4 YSNs with a large void space, serving as a confined reactor, not only offer a buffer against the volume variation, but also supply abundant active sites and restrain the agglomeration of Ti3C2Tx nanosheets. Furthermore, the novel structure of NiCo2S4 @Co3S4/Ti3C2Tx composite as electrode material could accelerate the thermodynamic stability, suppress the textural instability, and moderate the unavoidable volume change of active substance. Benefited from the above merits, the NiCo2S4 @Co3S4/Ti3C2Tx electrode demonstrates a significant specific capacitance (1872 F g−1 at 2 mV s−1), remarkable rate capability in the high current density (such as, 1121.6 F g−1 at 20 A g−1, 1533 F g−1 at 0.5 A g−1) and displays an excellent life span with 92.2 % of the capacity retention after 12,000 cycles at 10 A g−1. More particularly, the asymmetric supercapacitors (ASCs) fabricated with NiCo2S4 @Co3S4/Ti3C2Tx represent a fascinating energy density of 241.9 Wh kg−1 at a power density of 1125 W kg−1, which can light up 10 LEDs simultaneously. The results further prove that this rational design method could provide a meaningful prospect for MXenes and MOF derivatives composites for high-performance ASCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MXenes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yolk-shell nanocages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric supercapacitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diwu, Jiahao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Jianfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">954</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">954</subfield></datafield></record></collection>
|
score |
7.402525 |