Thermal evolution of the lower crust beneath the Transantarctic Mountains
Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history...
Ausführliche Beschreibung
Autor*in: |
Apen, Francisco E. [verfasserIn] Cottle, John M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical geology - New York, NY [u.a.] : Elsevier, 1966, 631 |
---|---|
Übergeordnetes Werk: |
volume:631 |
DOI / URN: |
10.1016/j.chemgeo.2023.121504 |
---|
Katalog-ID: |
ELV009810404 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009810404 | ||
003 | DE-627 | ||
005 | 20230926130111.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemgeo.2023.121504 |2 doi | |
035 | |a (DE-627)ELV009810404 | ||
035 | |a (ELSEVIER)S0009-2541(23)00204-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.32 |2 bkl | ||
100 | 1 | |a Apen, Francisco E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal evolution of the lower crust beneath the Transantarctic Mountains |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. | ||
650 | 4 | |a Lower crust | |
650 | 4 | |a Antarctica | |
650 | 4 | |a Petrochronology | |
650 | 4 | |a Xenoliths | |
650 | 4 | |a Heat flow | |
700 | 1 | |a Cottle, John M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical geology |d New York, NY [u.a.] : Elsevier, 1966 |g 631 |h Online-Ressource |w (DE-627)302724389 |w (DE-600)1492506-0 |w (DE-576)08195283X |x 0009-2541 |7 nnns |
773 | 1 | 8 | |g volume:631 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.32 |j Geochemie |q VZ |
951 | |a AR | ||
952 | |d 631 |
author_variant |
f e a fe fea j m c jm jmc |
---|---|
matchkey_str |
article:00092541:2023----::hraeouinfhlwrrsbnahhtasn |
hierarchy_sort_str |
2023 |
bklnumber |
38.32 |
publishDate |
2023 |
allfields |
10.1016/j.chemgeo.2023.121504 doi (DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Apen, Francisco E. verfasserin aut Thermal evolution of the lower crust beneath the Transantarctic Mountains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. Lower crust Antarctica Petrochronology Xenoliths Heat flow Cottle, John M. verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 631 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:631 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 631 |
spelling |
10.1016/j.chemgeo.2023.121504 doi (DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Apen, Francisco E. verfasserin aut Thermal evolution of the lower crust beneath the Transantarctic Mountains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. Lower crust Antarctica Petrochronology Xenoliths Heat flow Cottle, John M. verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 631 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:631 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 631 |
allfields_unstemmed |
10.1016/j.chemgeo.2023.121504 doi (DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Apen, Francisco E. verfasserin aut Thermal evolution of the lower crust beneath the Transantarctic Mountains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. Lower crust Antarctica Petrochronology Xenoliths Heat flow Cottle, John M. verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 631 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:631 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 631 |
allfieldsGer |
10.1016/j.chemgeo.2023.121504 doi (DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Apen, Francisco E. verfasserin aut Thermal evolution of the lower crust beneath the Transantarctic Mountains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. Lower crust Antarctica Petrochronology Xenoliths Heat flow Cottle, John M. verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 631 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:631 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 631 |
allfieldsSound |
10.1016/j.chemgeo.2023.121504 doi (DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Apen, Francisco E. verfasserin aut Thermal evolution of the lower crust beneath the Transantarctic Mountains 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. Lower crust Antarctica Petrochronology Xenoliths Heat flow Cottle, John M. verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 631 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:631 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 631 |
language |
English |
source |
Enthalten in Chemical geology 631 volume:631 |
sourceStr |
Enthalten in Chemical geology 631 volume:631 |
format_phy_str_mv |
Article |
bklname |
Geochemie |
institution |
findex.gbv.de |
topic_facet |
Lower crust Antarctica Petrochronology Xenoliths Heat flow |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Chemical geology |
authorswithroles_txt_mv |
Apen, Francisco E. @@aut@@ Cottle, John M. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302724389 |
dewey-sort |
3550 |
id |
ELV009810404 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009810404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemgeo.2023.121504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009810404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2541(23)00204-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Apen, Francisco E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal evolution of the lower crust beneath the Transantarctic Mountains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lower crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antarctica</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Petrochronology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xenoliths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cottle, John M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical geology</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1966</subfield><subfield code="g">631</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302724389</subfield><subfield code="w">(DE-600)1492506-0</subfield><subfield code="w">(DE-576)08195283X</subfield><subfield code="x">0009-2541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:631</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">631</subfield></datafield></record></collection>
|
author |
Apen, Francisco E. |
spellingShingle |
Apen, Francisco E. ddc 550 bkl 38.32 misc Lower crust misc Antarctica misc Petrochronology misc Xenoliths misc Heat flow Thermal evolution of the lower crust beneath the Transantarctic Mountains |
authorStr |
Apen, Francisco E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302724389 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0009-2541 |
topic_title |
550 VZ 38.32 bkl Thermal evolution of the lower crust beneath the Transantarctic Mountains Lower crust Antarctica Petrochronology Xenoliths Heat flow |
topic |
ddc 550 bkl 38.32 misc Lower crust misc Antarctica misc Petrochronology misc Xenoliths misc Heat flow |
topic_unstemmed |
ddc 550 bkl 38.32 misc Lower crust misc Antarctica misc Petrochronology misc Xenoliths misc Heat flow |
topic_browse |
ddc 550 bkl 38.32 misc Lower crust misc Antarctica misc Petrochronology misc Xenoliths misc Heat flow |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical geology |
hierarchy_parent_id |
302724389 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Chemical geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X |
title |
Thermal evolution of the lower crust beneath the Transantarctic Mountains |
ctrlnum |
(DE-627)ELV009810404 (ELSEVIER)S0009-2541(23)00204-8 |
title_full |
Thermal evolution of the lower crust beneath the Transantarctic Mountains |
author_sort |
Apen, Francisco E. |
journal |
Chemical geology |
journalStr |
Chemical geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Apen, Francisco E. Cottle, John M. |
container_volume |
631 |
class |
550 VZ 38.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Apen, Francisco E. |
doi_str_mv |
10.1016/j.chemgeo.2023.121504 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
thermal evolution of the lower crust beneath the transantarctic mountains |
title_auth |
Thermal evolution of the lower crust beneath the Transantarctic Mountains |
abstract |
Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. |
abstractGer |
Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. |
abstract_unstemmed |
Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Thermal evolution of the lower crust beneath the Transantarctic Mountains |
remote_bool |
true |
author2 |
Cottle, John M. |
author2Str |
Cottle, John M. |
ppnlink |
302724389 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chemgeo.2023.121504 |
up_date |
2024-07-07T00:25:47.540Z |
_version_ |
1803877820706848768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009810404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemgeo.2023.121504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009810404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2541(23)00204-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Apen, Francisco E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal evolution of the lower crust beneath the Transantarctic Mountains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Models of uplift, rifting, and heat transfer in the Transantarctic Mountains (TAM) rely on knowledge of the thermal evolution of the lower crust, but such information has remained elusive. Granulite xenoliths entrained in <2 Ma rift basalts at the TAM front chronicle the long-term thermal history of the deep crust and yield insight into the Cenozoic evolution of the TAM. Major-element thermobarometry of the xenoliths record elevated temperatures of 860–920 °C at ∼0.8 GPa. In situ coupled U-Pb and trace element zircon and titanite data reveal that the deep crust experienced intense heating at least twice: once at 850–900 °C ca. 500 Ma and again at 740–900 °C starting ca. 37 Ma. The Cenozoic temperature-time path indicates a high geothermal gradient beneath the TAM front—with 800–900 °C at 20–30 km depth and 900–1000 °C temperatures at the Moho (30–35 km depth)—and is interpreted to reflect heating by the adjacent West Antarctic Rift System. Despite elevated temperatures in the lower crust, minimal melting beneath the present-day TAM is inferred given that the crust is refractory, having been previously depleted during Ordovician magmatism. The identification of hot crust beneath the TAM forces revisions to estimates of the elastic thickness of the lithosphere, which underpin models invoking a flexural origin for the high elevations of the TAM. The observed Cenozoic heating trend supports models that suggest uplift was driven by a buoyant thermal anomaly beneath the TAM front. The finding of dry and strong deep crust is also in line with models wherein the TAM have maintained high elevations since the Mesozoic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lower crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antarctica</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Petrochronology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xenoliths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cottle, John M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical geology</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1966</subfield><subfield code="g">631</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302724389</subfield><subfield code="w">(DE-600)1492506-0</subfield><subfield code="w">(DE-576)08195283X</subfield><subfield code="x">0009-2541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:631</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">631</subfield></datafield></record></collection>
|
score |
7.4021063 |