Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties
It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent t...
Ausführliche Beschreibung
Autor*in: |
Shen, Shuai [verfasserIn] Xin, Yi [verfasserIn] Niu, Zhaoqi [verfasserIn] Ma, Xutao [verfasserIn] Zhang, Junan [verfasserIn] Hou, Xiao [verfasserIn] Ma, Xiaoyan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer degradation and stability - Amsterdam [u.a.] : Elsevier Science, 1979, 203 |
---|---|
Übergeordnetes Werk: |
volume:203 |
DOI / URN: |
10.1016/j.polymdegradstab.2022.110086 |
---|
Katalog-ID: |
ELV009833463 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV009833463 | ||
003 | DE-627 | ||
005 | 20230530161127.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.polymdegradstab.2022.110086 |2 doi | |
035 | |a (DE-627)ELV009833463 | ||
035 | |a (ELSEVIER)S0141-3910(22)00264-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q VZ |
084 | |a 51.70 |2 bkl | ||
084 | |a 35.80 |2 bkl | ||
100 | 1 | |a Shen, Shuai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. | ||
650 | 4 | |a Silicon rubber | |
650 | 4 | |a Phosphazene derivative | |
650 | 4 | |a Thermal protection | |
650 | 4 | |a Ablation mechanism | |
700 | 1 | |a Xin, Yi |e verfasserin |4 aut | |
700 | 1 | |a Niu, Zhaoqi |e verfasserin |4 aut | |
700 | 1 | |a Ma, Xutao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Junan |e verfasserin |4 aut | |
700 | 1 | |a Hou, Xiao |e verfasserin |4 aut | |
700 | 1 | |a Ma, Xiaoyan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Polymer degradation and stability |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 203 |h Online-Ressource |w (DE-627)308447352 |w (DE-600)1502217-1 |w (DE-576)259484288 |7 nnns |
773 | 1 | 8 | |g volume:203 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.70 |j Polymerwerkstoffe |j Kunststoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 35.80 |j Makromolekulare Chemie |q VZ |
951 | |a AR | ||
952 | |d 203 |
author_variant |
s s ss y x yx z n zn x m xm j z jz x h xh x m xm |
---|---|
matchkey_str |
shenshuaixinyiniuzhaoqimaxutaozhangjunan:2022----:hshzndrvtvcosikdiudiioeubrnisehnc |
hierarchy_sort_str |
2022 |
bklnumber |
51.70 35.80 |
publishDate |
2022 |
allfields |
10.1016/j.polymdegradstab.2022.110086 doi (DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 DE-627 ger DE-627 rda eng 540 660 VZ 51.70 bkl 35.80 bkl Shen, Shuai verfasserin aut Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism Xin, Yi verfasserin aut Niu, Zhaoqi verfasserin aut Ma, Xutao verfasserin aut Zhang, Junan verfasserin aut Hou, Xiao verfasserin aut Ma, Xiaoyan verfasserin aut Enthalten in Polymer degradation and stability Amsterdam [u.a.] : Elsevier Science, 1979 203 Online-Ressource (DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde VZ 35.80 Makromolekulare Chemie VZ AR 203 |
spelling |
10.1016/j.polymdegradstab.2022.110086 doi (DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 DE-627 ger DE-627 rda eng 540 660 VZ 51.70 bkl 35.80 bkl Shen, Shuai verfasserin aut Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism Xin, Yi verfasserin aut Niu, Zhaoqi verfasserin aut Ma, Xutao verfasserin aut Zhang, Junan verfasserin aut Hou, Xiao verfasserin aut Ma, Xiaoyan verfasserin aut Enthalten in Polymer degradation and stability Amsterdam [u.a.] : Elsevier Science, 1979 203 Online-Ressource (DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde VZ 35.80 Makromolekulare Chemie VZ AR 203 |
allfields_unstemmed |
10.1016/j.polymdegradstab.2022.110086 doi (DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 DE-627 ger DE-627 rda eng 540 660 VZ 51.70 bkl 35.80 bkl Shen, Shuai verfasserin aut Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism Xin, Yi verfasserin aut Niu, Zhaoqi verfasserin aut Ma, Xutao verfasserin aut Zhang, Junan verfasserin aut Hou, Xiao verfasserin aut Ma, Xiaoyan verfasserin aut Enthalten in Polymer degradation and stability Amsterdam [u.a.] : Elsevier Science, 1979 203 Online-Ressource (DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde VZ 35.80 Makromolekulare Chemie VZ AR 203 |
allfieldsGer |
10.1016/j.polymdegradstab.2022.110086 doi (DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 DE-627 ger DE-627 rda eng 540 660 VZ 51.70 bkl 35.80 bkl Shen, Shuai verfasserin aut Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism Xin, Yi verfasserin aut Niu, Zhaoqi verfasserin aut Ma, Xutao verfasserin aut Zhang, Junan verfasserin aut Hou, Xiao verfasserin aut Ma, Xiaoyan verfasserin aut Enthalten in Polymer degradation and stability Amsterdam [u.a.] : Elsevier Science, 1979 203 Online-Ressource (DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde VZ 35.80 Makromolekulare Chemie VZ AR 203 |
allfieldsSound |
10.1016/j.polymdegradstab.2022.110086 doi (DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 DE-627 ger DE-627 rda eng 540 660 VZ 51.70 bkl 35.80 bkl Shen, Shuai verfasserin aut Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism Xin, Yi verfasserin aut Niu, Zhaoqi verfasserin aut Ma, Xutao verfasserin aut Zhang, Junan verfasserin aut Hou, Xiao verfasserin aut Ma, Xiaoyan verfasserin aut Enthalten in Polymer degradation and stability Amsterdam [u.a.] : Elsevier Science, 1979 203 Online-Ressource (DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde VZ 35.80 Makromolekulare Chemie VZ AR 203 |
language |
English |
source |
Enthalten in Polymer degradation and stability 203 volume:203 |
sourceStr |
Enthalten in Polymer degradation and stability 203 volume:203 |
format_phy_str_mv |
Article |
bklname |
Polymerwerkstoffe Kunststoffe Makromolekulare Chemie |
institution |
findex.gbv.de |
topic_facet |
Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Polymer degradation and stability |
authorswithroles_txt_mv |
Shen, Shuai @@aut@@ Xin, Yi @@aut@@ Niu, Zhaoqi @@aut@@ Ma, Xutao @@aut@@ Zhang, Junan @@aut@@ Hou, Xiao @@aut@@ Ma, Xiaoyan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
308447352 |
dewey-sort |
3540 |
id |
ELV009833463 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009833463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530161127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymdegradstab.2022.110086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009833463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-3910(22)00264-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphazene derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ablation mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Zhaoqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xutao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiaoyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer degradation and stability</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">203</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447352</subfield><subfield code="w">(DE-600)1502217-1</subfield><subfield code="w">(DE-576)259484288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="j">Polymerwerkstoffe</subfield><subfield code="j">Kunststoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield></datafield></record></collection>
|
author |
Shen, Shuai |
spellingShingle |
Shen, Shuai ddc 540 bkl 51.70 bkl 35.80 misc Silicon rubber misc Phosphazene derivative misc Thermal protection misc Ablation mechanism Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
authorStr |
Shen, Shuai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447352 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 660 VZ 51.70 bkl 35.80 bkl Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties Silicon rubber Phosphazene derivative Thermal protection Ablation mechanism |
topic |
ddc 540 bkl 51.70 bkl 35.80 misc Silicon rubber misc Phosphazene derivative misc Thermal protection misc Ablation mechanism |
topic_unstemmed |
ddc 540 bkl 51.70 bkl 35.80 misc Silicon rubber misc Phosphazene derivative misc Thermal protection misc Ablation mechanism |
topic_browse |
ddc 540 bkl 51.70 bkl 35.80 misc Silicon rubber misc Phosphazene derivative misc Thermal protection misc Ablation mechanism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymer degradation and stability |
hierarchy_parent_id |
308447352 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Polymer degradation and stability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447352 (DE-600)1502217-1 (DE-576)259484288 |
title |
Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
ctrlnum |
(DE-627)ELV009833463 (ELSEVIER)S0141-3910(22)00264-6 |
title_full |
Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
author_sort |
Shen, Shuai |
journal |
Polymer degradation and stability |
journalStr |
Polymer degradation and stability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Shen, Shuai Xin, Yi Niu, Zhaoqi Ma, Xutao Zhang, Junan Hou, Xiao Ma, Xiaoyan |
container_volume |
203 |
class |
540 660 VZ 51.70 bkl 35.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shen, Shuai |
doi_str_mv |
10.1016/j.polymdegradstab.2022.110086 |
dewey-full |
540 660 |
author2-role |
verfasserin |
title_sort |
phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
title_auth |
Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
abstract |
It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. |
abstractGer |
It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. |
abstract_unstemmed |
It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties |
remote_bool |
true |
author2 |
Xin, Yi Niu, Zhaoqi Ma, Xutao Zhang, Junan Hou, Xiao Ma, Xiaoyan |
author2Str |
Xin, Yi Niu, Zhaoqi Ma, Xutao Zhang, Junan Hou, Xiao Ma, Xiaoyan |
ppnlink |
308447352 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.polymdegradstab.2022.110086 |
up_date |
2024-07-07T00:30:38.383Z |
_version_ |
1803878125675741184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009833463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530161127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymdegradstab.2022.110086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009833463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-3910(22)00264-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphazene derivative cross-linked liquid silicone rubber and its mechanical and thermal properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is still a challenge for liquid silicone rubber to meet the needs of aerospace and electronics in terms of mechanical and thermal properties. In this study, N3P3 [NH(CH2)3Si(OCH2CH3)3]6 (APESP), a phosphazene derivative containing multiple siliconethoxy groups was adopted as cross-linking agent to cure the condensed room temperature vulcanizing liquid silicone rubber (RTV-CLSR) . The results show that APESP can effectively complete the curing process of condensed silicone rubber taking the place of tetraethyl orthosilicate (TEOS), and enhance the restriction of cross-linking point to molecular chains, thereby effectively improving the mechanical strength, thermal stability, and ablation resistance of SR. Compared with unmodified SR, the tensile strength of APESP modified SR increased by 272%, the elongation at break decreased slightly but still remained at 362%, and the mass residual rate at 800 °C significantly increased by 19.86% when 11 phr APESP was added. The linear ablation rate and mass ablation rate of SR were reduced to 0.239 mm·s−1 and 0.095 g·s−1, a decrease of 60.63% and 44.41%, respectively. This work may provide a new perspective for the application of liquid silicone rubber in the fields with high thermal performance requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphazene derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ablation mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Zhaoqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xutao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiaoyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer degradation and stability</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">203</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447352</subfield><subfield code="w">(DE-600)1502217-1</subfield><subfield code="w">(DE-576)259484288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="j">Polymerwerkstoffe</subfield><subfield code="j">Kunststoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield></datafield></record></collection>
|
score |
7.3994675 |