Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating
The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were u...
Ausführliche Beschreibung
Autor*in: |
Nataraj, M.V. [verfasserIn] Swaroop, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Laser shock peening without coating |
---|
Übergeordnetes Werk: |
Enthalten in: Vacuum - Amsterdam [u.a.] : Elsevier Science, 1951, 213 |
---|---|
Übergeordnetes Werk: |
volume:213 |
DOI / URN: |
10.1016/j.vacuum.2023.112078 |
---|
Katalog-ID: |
ELV009869573 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009869573 | ||
003 | DE-627 | ||
005 | 20230619073046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.vacuum.2023.112078 |2 doi | |
035 | |a (DE-627)ELV009869573 | ||
035 | |a (ELSEVIER)S0042-207X(23)00275-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 58.19 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Nataraj, M.V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. | ||
650 | 4 | |a Laser shock peening without coating | |
650 | 4 | |a Ti-2.5 Cu | |
650 | 4 | |a Residual stress-sin | |
650 | 4 | |a Electron backscattered diffraction | |
650 | 4 | |a Mechanical twins | |
650 | 4 | |a Nano precipitates | |
700 | 1 | |a Swaroop, S. |e verfasserin |0 (orcid)0000-0001-9872-811X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Vacuum |d Amsterdam [u.a.] : Elsevier Science, 1951 |g 213 |h Online-Ressource |w (DE-627)271176393 |w (DE-600)1479044-0 |w (DE-576)114088187 |x 0042-207X |7 nnns |
773 | 1 | 8 | |g volume:213 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.19 |j Verfahrenstechnik: Sonstiges |q VZ |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 213 |
author_variant |
m n mn s s ss |
---|---|
matchkey_str |
article:0042207X:2023----::fetopwrestorsdasrsadirsrcuabhvoot2calyya |
hierarchy_sort_str |
2023 |
bklnumber |
58.19 33.09 52.78 |
publishDate |
2023 |
allfields |
10.1016/j.vacuum.2023.112078 doi (DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 DE-627 ger DE-627 rda eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Nataraj, M.V. verfasserin aut Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates Swaroop, S. verfasserin (orcid)0000-0001-9872-811X aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 213 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 213 |
spelling |
10.1016/j.vacuum.2023.112078 doi (DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 DE-627 ger DE-627 rda eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Nataraj, M.V. verfasserin aut Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates Swaroop, S. verfasserin (orcid)0000-0001-9872-811X aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 213 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 213 |
allfields_unstemmed |
10.1016/j.vacuum.2023.112078 doi (DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 DE-627 ger DE-627 rda eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Nataraj, M.V. verfasserin aut Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates Swaroop, S. verfasserin (orcid)0000-0001-9872-811X aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 213 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 213 |
allfieldsGer |
10.1016/j.vacuum.2023.112078 doi (DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 DE-627 ger DE-627 rda eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Nataraj, M.V. verfasserin aut Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates Swaroop, S. verfasserin (orcid)0000-0001-9872-811X aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 213 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 213 |
allfieldsSound |
10.1016/j.vacuum.2023.112078 doi (DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 DE-627 ger DE-627 rda eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Nataraj, M.V. verfasserin aut Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates Swaroop, S. verfasserin (orcid)0000-0001-9872-811X aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 213 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 213 |
language |
English |
source |
Enthalten in Vacuum 213 volume:213 |
sourceStr |
Enthalten in Vacuum 213 volume:213 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Sonstiges Physik unter besonderen Bedingungen Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Vacuum |
authorswithroles_txt_mv |
Nataraj, M.V. @@aut@@ Swaroop, S. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
271176393 |
dewey-sort |
3530 |
id |
ELV009869573 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009869573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230619073046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2023.112078</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009869573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(23)00275-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nataraj, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser shock peening without coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti-2.5 Cu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual stress-sin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron backscattered diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical twins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano precipitates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swaroop, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9872-811X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Vacuum</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">213</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176393</subfield><subfield code="w">(DE-600)1479044-0</subfield><subfield code="w">(DE-576)114088187</subfield><subfield code="x">0042-207X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield></datafield></record></collection>
|
author |
Nataraj, M.V. |
spellingShingle |
Nataraj, M.V. ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Laser shock peening without coating misc Ti-2.5 Cu misc Residual stress-sin misc Electron backscattered diffraction misc Mechanical twins misc Nano precipitates Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
authorStr |
Nataraj, M.V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271176393 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0042-207X |
topic_title |
530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating Laser shock peening without coating Ti-2.5 Cu Residual stress-sin Electron backscattered diffraction Mechanical twins Nano precipitates |
topic |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Laser shock peening without coating misc Ti-2.5 Cu misc Residual stress-sin misc Electron backscattered diffraction misc Mechanical twins misc Nano precipitates |
topic_unstemmed |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Laser shock peening without coating misc Ti-2.5 Cu misc Residual stress-sin misc Electron backscattered diffraction misc Mechanical twins misc Nano precipitates |
topic_browse |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Laser shock peening without coating misc Ti-2.5 Cu misc Residual stress-sin misc Electron backscattered diffraction misc Mechanical twins misc Nano precipitates |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Vacuum |
hierarchy_parent_id |
271176393 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Vacuum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 |
title |
Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
ctrlnum |
(DE-627)ELV009869573 (ELSEVIER)S0042-207X(23)00275-0 |
title_full |
Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
author_sort |
Nataraj, M.V. |
journal |
Vacuum |
journalStr |
Vacuum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Nataraj, M.V. Swaroop, S. |
container_volume |
213 |
class |
530 VZ 58.19 bkl 33.09 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nataraj, M.V. |
doi_str_mv |
10.1016/j.vacuum.2023.112078 |
normlink |
(ORCID)0000-0001-9872-811X |
normlink_prefix_str_mv |
(orcid)0000-0001-9872-811X |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
effects of power density on residual stress and microstructural behavior of ti-2.5cu alloy by laser shock peening without coating |
title_auth |
Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
abstract |
The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. |
abstractGer |
The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. |
abstract_unstemmed |
The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating |
remote_bool |
true |
author2 |
Swaroop, S. |
author2Str |
Swaroop, S. |
ppnlink |
271176393 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.vacuum.2023.112078 |
up_date |
2024-07-07T00:38:07.236Z |
_version_ |
1803878596333273088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009869573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230619073046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2023.112078</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009869573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(23)00275-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nataraj, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of power density on residual stress and microstructural behavior of Ti-2.5Cu alloy by laser shock peening without coating</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present study concerns the micro structural changes of Ti-2.5 Cu after LPwC at various laser intensities (i.e., ≈ 3 GW cm−2, 6 GW cm−2 and 9 GW cm−2). X-ray diffraction (XRD), electron backscattered diffraction (EBSD), transmission electron microscope (TEM) were used to analyze the microstructure. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation behavior of the samples after peening. The depth profile of residual stress was obtained using the sin2ѱ X-ray diffraction technique, and the compressive residual stress increased for all the peened conditions in the surface and sub-surface regions, and the maximum obtained was −402.44 MPa at 50 μm depth for the 9 GW cm−2. Furthermore, the cross-sectional micro hardness of the peened samples improved at a depth of 50 μm with increasing laser intensity. For the highest energy, the maximum hardness at a depth of 50 μm was 439.40 HV (0.1), which was higher than the unpeened sample (315.56 HV0.1). TEM studies showed nano precipitates (50–170 nm), mechanical twins with a width ranging from (27.20–118.51 nm) and cell size dislocation structure. EBSD results conformed the high angle grain boundaries increased to 43% with the formation of mechanical twins at the higher energy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser shock peening without coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti-2.5 Cu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual stress-sin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron backscattered diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical twins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano precipitates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swaroop, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9872-811X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Vacuum</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">213</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176393</subfield><subfield code="w">(DE-600)1479044-0</subfield><subfield code="w">(DE-576)114088187</subfield><subfield code="x">0042-207X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield></datafield></record></collection>
|
score |
7.4011583 |