Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture
In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa...
Ausführliche Beschreibung
Autor*in: |
Liu, Bo [verfasserIn] Guo, Xiangji [verfasserIn] Xi, Xiuzhi [verfasserIn] Sun, Jianhua [verfasserIn] Zhang, Bo [verfasserIn] Yang, Zhuqiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 263 |
---|---|
Übergeordnetes Werk: |
volume:263 |
DOI / URN: |
10.1016/j.energy.2022.125989 |
---|
Katalog-ID: |
ELV009879056 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV009879056 | ||
003 | DE-627 | ||
005 | 20230530170919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2022.125989 |2 doi | |
035 | |a (DE-627)ELV009879056 | ||
035 | |a (ELSEVIER)S0360-5442(22)02875-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Liu, Bo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. | ||
650 | 4 | |a Zeotropic mixture | |
650 | 4 | |a Ejector refrigeration cycle | |
650 | 4 | |a Finite heat capacity source | |
650 | 4 | |a Temperature glide | |
650 | 4 | |a Entrainment ratio | |
700 | 1 | |a Guo, Xiangji |e verfasserin |4 aut | |
700 | 1 | |a Xi, Xiuzhi |e verfasserin |4 aut | |
700 | 1 | |a Sun, Jianhua |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Bo |e verfasserin |4 aut | |
700 | 1 | |a Yang, Zhuqiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 263 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:263 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 263 |
author_variant |
b l bl x g xg x x xx j s js b z bz z y zy |
---|---|
matchkey_str |
article:18736785:2022----::hroyaiaayeoeetrergrtoccei |
hierarchy_sort_str |
2022 |
bklnumber |
50.70 |
publishDate |
2022 |
allfields |
10.1016/j.energy.2022.125989 doi (DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Liu, Bo verfasserin aut Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio Guo, Xiangji verfasserin aut Xi, Xiuzhi verfasserin aut Sun, Jianhua verfasserin aut Zhang, Bo verfasserin aut Yang, Zhuqiang verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 263 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:263 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 263 |
spelling |
10.1016/j.energy.2022.125989 doi (DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Liu, Bo verfasserin aut Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio Guo, Xiangji verfasserin aut Xi, Xiuzhi verfasserin aut Sun, Jianhua verfasserin aut Zhang, Bo verfasserin aut Yang, Zhuqiang verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 263 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:263 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 263 |
allfields_unstemmed |
10.1016/j.energy.2022.125989 doi (DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Liu, Bo verfasserin aut Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio Guo, Xiangji verfasserin aut Xi, Xiuzhi verfasserin aut Sun, Jianhua verfasserin aut Zhang, Bo verfasserin aut Yang, Zhuqiang verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 263 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:263 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 263 |
allfieldsGer |
10.1016/j.energy.2022.125989 doi (DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Liu, Bo verfasserin aut Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio Guo, Xiangji verfasserin aut Xi, Xiuzhi verfasserin aut Sun, Jianhua verfasserin aut Zhang, Bo verfasserin aut Yang, Zhuqiang verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 263 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:263 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 263 |
allfieldsSound |
10.1016/j.energy.2022.125989 doi (DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Liu, Bo verfasserin aut Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio Guo, Xiangji verfasserin aut Xi, Xiuzhi verfasserin aut Sun, Jianhua verfasserin aut Zhang, Bo verfasserin aut Yang, Zhuqiang verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 263 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:263 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 263 |
language |
English |
source |
Enthalten in Energy 263 volume:263 |
sourceStr |
Enthalten in Energy 263 volume:263 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Liu, Bo @@aut@@ Guo, Xiangji @@aut@@ Xi, Xiuzhi @@aut@@ Sun, Jianhua @@aut@@ Zhang, Bo @@aut@@ Yang, Zhuqiang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV009879056 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009879056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530170919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.125989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009879056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)02875-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zeotropic mixture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ejector refrigeration cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite heat capacity source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entrainment ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Xiangji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Xiuzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jianhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Zhuqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">263</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield></datafield></record></collection>
|
author |
Liu, Bo |
spellingShingle |
Liu, Bo ddc 600 bkl 50.70 misc Zeotropic mixture misc Ejector refrigeration cycle misc Finite heat capacity source misc Temperature glide misc Entrainment ratio Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
authorStr |
Liu, Bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 VZ 50.70 bkl Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture Zeotropic mixture Ejector refrigeration cycle Finite heat capacity source Temperature glide Entrainment ratio |
topic |
ddc 600 bkl 50.70 misc Zeotropic mixture misc Ejector refrigeration cycle misc Finite heat capacity source misc Temperature glide misc Entrainment ratio |
topic_unstemmed |
ddc 600 bkl 50.70 misc Zeotropic mixture misc Ejector refrigeration cycle misc Finite heat capacity source misc Temperature glide misc Entrainment ratio |
topic_browse |
ddc 600 bkl 50.70 misc Zeotropic mixture misc Ejector refrigeration cycle misc Finite heat capacity source misc Temperature glide misc Entrainment ratio |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
ctrlnum |
(DE-627)ELV009879056 (ELSEVIER)S0360-5442(22)02875-4 |
title_full |
Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
author_sort |
Liu, Bo |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Bo Guo, Xiangji Xi, Xiuzhi Sun, Jianhua Zhang, Bo Yang, Zhuqiang |
container_volume |
263 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Bo |
doi_str_mv |
10.1016/j.energy.2022.125989 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
title_auth |
Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
abstract |
In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. |
abstractGer |
In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. |
abstract_unstemmed |
In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture |
remote_bool |
true |
author2 |
Guo, Xiangji Xi, Xiuzhi Sun, Jianhua Zhang, Bo Yang, Zhuqiang |
author2Str |
Guo, Xiangji Xi, Xiuzhi Sun, Jianhua Zhang, Bo Yang, Zhuqiang |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2022.125989 |
up_date |
2024-07-07T00:40:07.882Z |
_version_ |
1803878722840821760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009879056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230530170919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.125989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009879056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)02875-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, a model is established for an ejector with a zeotropic refrigerant as the working medium, and the refrigeration cycle of the ejector is analysed. Depending on the boiling point, different refrigerants are combined to prepare R123/R245fa, R245fa/R141b, R141b/RC318, R245fa/R134a, R245fa/R22, R141b/R134a, R245fa/R143a, and R141b/R22. The temperature and pressure in the generator, evaporator, and condenser are calculated using these refrigerants, and the influence of the temperature glide on these conditions is investigated. The performance of the ejector refrigeration cycle is also studied. The results indicate that the outlet temperatures of both the generator and evaporator can be increased using a zeotropic mixture compared to that using a pure refrigerant. In the condenser, the average temperature difference of the heat transfer is larger than that of the pure refrigerant because of the temperature glide characteristics of the zeotropic refrigerant, which reduces the heat transfer area of the condenser. Among the studied refrigerants, using R245fa/R22 (0.3/0.7) as the working medium yields the refrigeration cycle with the best COP (0.293), which is 4% and 22% higher than those using R22 and R245fa, respectively. The results reveal the advantages of zeotropic refrigerants and provide a theoretical foundation for further research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zeotropic mixture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ejector refrigeration cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite heat capacity source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entrainment ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Xiangji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Xiuzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jianhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Zhuqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">263</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield></datafield></record></collection>
|
score |
7.399108 |