A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost
Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the adva...
Ausführliche Beschreibung
Autor*in: |
Rehman, Shafiqur [verfasserIn] Alhems, Luai M. [verfasserIn] Alam, Md. Mahbub [verfasserIn] Wang, Longjun [verfasserIn] Toor, Zakria [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean engineering - Amsterdam [u.a.] : Elsevier Science, 1970, 267 |
---|---|
Übergeordnetes Werk: |
volume:267 |
DOI / URN: |
10.1016/j.oceaneng.2022.113192 |
---|
Katalog-ID: |
ELV009982272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009982272 | ||
003 | DE-627 | ||
005 | 20230606133621.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2022.113192 |2 doi | |
035 | |a (DE-627)ELV009982272 | ||
035 | |a (ELSEVIER)S0029-8018(22)02475-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Rehman, Shafiqur |e verfasserin |4 aut | |
245 | 1 | 0 | |a A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. | ||
650 | 4 | |a Wind power | |
650 | 4 | |a Ocean wave power | |
650 | 4 | |a Tidal energy | |
650 | 4 | |a Salinity gradient energy | |
650 | 4 | |a Ocean thermal energy | |
650 | 4 | |a Ocean currents | |
700 | 1 | |a Alhems, Luai M. |e verfasserin |4 aut | |
700 | 1 | |a Alam, Md. Mahbub |e verfasserin |4 aut | |
700 | 1 | |a Wang, Longjun |e verfasserin |0 (orcid)0000-0001-8197-1017 |4 aut | |
700 | 1 | |a Toor, Zakria |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean engineering |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 267 |h Online-Ressource |w (DE-627)30658977X |w (DE-600)1498543-3 |w (DE-576)259484164 |x 0029-8018 |7 nnns |
773 | 1 | 8 | |g volume:267 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 267 |
author_variant |
s r sr l m a lm lma m m a mm mma l w lw z t zt |
---|---|
matchkey_str |
article:00298018:2022----::rveoeegetatofownadcatcnlgemr |
hierarchy_sort_str |
2022 |
bklnumber |
50.92 |
publishDate |
2022 |
allfields |
10.1016/j.oceaneng.2022.113192 doi (DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Rehman, Shafiqur verfasserin aut A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents Alhems, Luai M. verfasserin aut Alam, Md. Mahbub verfasserin aut Wang, Longjun verfasserin (orcid)0000-0001-8197-1017 aut Toor, Zakria verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 267 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:267 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik VZ AR 267 |
spelling |
10.1016/j.oceaneng.2022.113192 doi (DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Rehman, Shafiqur verfasserin aut A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents Alhems, Luai M. verfasserin aut Alam, Md. Mahbub verfasserin aut Wang, Longjun verfasserin (orcid)0000-0001-8197-1017 aut Toor, Zakria verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 267 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:267 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik VZ AR 267 |
allfields_unstemmed |
10.1016/j.oceaneng.2022.113192 doi (DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Rehman, Shafiqur verfasserin aut A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents Alhems, Luai M. verfasserin aut Alam, Md. Mahbub verfasserin aut Wang, Longjun verfasserin (orcid)0000-0001-8197-1017 aut Toor, Zakria verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 267 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:267 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik VZ AR 267 |
allfieldsGer |
10.1016/j.oceaneng.2022.113192 doi (DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Rehman, Shafiqur verfasserin aut A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents Alhems, Luai M. verfasserin aut Alam, Md. Mahbub verfasserin aut Wang, Longjun verfasserin (orcid)0000-0001-8197-1017 aut Toor, Zakria verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 267 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:267 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik VZ AR 267 |
allfieldsSound |
10.1016/j.oceaneng.2022.113192 doi (DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Rehman, Shafiqur verfasserin aut A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents Alhems, Luai M. verfasserin aut Alam, Md. Mahbub verfasserin aut Wang, Longjun verfasserin (orcid)0000-0001-8197-1017 aut Toor, Zakria verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 267 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:267 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik VZ AR 267 |
language |
English |
source |
Enthalten in Ocean engineering 267 volume:267 |
sourceStr |
Enthalten in Ocean engineering 267 volume:267 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Ocean engineering |
authorswithroles_txt_mv |
Rehman, Shafiqur @@aut@@ Alhems, Luai M. @@aut@@ Alam, Md. Mahbub @@aut@@ Wang, Longjun @@aut@@ Toor, Zakria @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
30658977X |
dewey-sort |
3690 |
id |
ELV009982272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009982272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2022.113192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009982272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(22)02475-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rehman, Shafiqur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean wave power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tidal energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salinity gradient energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean thermal energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean currents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhems, Luai M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alam, Md. Mahbub</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Longjun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8197-1017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toor, Zakria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">267</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">267</subfield></datafield></record></collection>
|
author |
Rehman, Shafiqur |
spellingShingle |
Rehman, Shafiqur ddc 690 bkl 50.92 misc Wind power misc Ocean wave power misc Tidal energy misc Salinity gradient energy misc Ocean thermal energy misc Ocean currents A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
authorStr |
Rehman, Shafiqur |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30658977X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-8018 |
topic_title |
690 VZ 50.92 bkl A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost Wind power Ocean wave power Tidal energy Salinity gradient energy Ocean thermal energy Ocean currents |
topic |
ddc 690 bkl 50.92 misc Wind power misc Ocean wave power misc Tidal energy misc Salinity gradient energy misc Ocean thermal energy misc Ocean currents |
topic_unstemmed |
ddc 690 bkl 50.92 misc Wind power misc Ocean wave power misc Tidal energy misc Salinity gradient energy misc Ocean thermal energy misc Ocean currents |
topic_browse |
ddc 690 bkl 50.92 misc Wind power misc Ocean wave power misc Tidal energy misc Salinity gradient energy misc Ocean thermal energy misc Ocean currents |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean engineering |
hierarchy_parent_id |
30658977X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Ocean engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 |
title |
A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
ctrlnum |
(DE-627)ELV009982272 (ELSEVIER)S0029-8018(22)02475-1 |
title_full |
A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
author_sort |
Rehman, Shafiqur |
journal |
Ocean engineering |
journalStr |
Ocean engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Rehman, Shafiqur Alhems, Luai M. Alam, Md. Mahbub Wang, Longjun Toor, Zakria |
container_volume |
267 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rehman, Shafiqur |
doi_str_mv |
10.1016/j.oceaneng.2022.113192 |
normlink |
(ORCID)0000-0001-8197-1017 |
normlink_prefix_str_mv |
(orcid)0000-0001-8197-1017 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
a review of energy extraction from wind and ocean: technologies, merits, efficiencies, and cost |
title_auth |
A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
abstract |
Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. |
abstractGer |
Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. |
abstract_unstemmed |
Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost |
remote_bool |
true |
author2 |
Alhems, Luai M. Alam, Md. Mahbub Wang, Longjun Toor, Zakria |
author2Str |
Alhems, Luai M. Alam, Md. Mahbub Wang, Longjun Toor, Zakria |
ppnlink |
30658977X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.oceaneng.2022.113192 |
up_date |
2024-07-07T01:00:56.952Z |
_version_ |
1803880032584597504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009982272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606133621.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2022.113192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009982272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(22)02475-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rehman, Shafiqur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sustainable power sources have become indispensable in modern society. The most promising renewable sources of energy are wind and ocean, which are widely distributed worldwide. As such, wind and ocean power technologies have attracted great attention of researchers and engineers, achieving the advanced stage of power development. This work aims to review the possible wind and ocean power technologies, to make a comparative assessment in terms of energy availability, efficiency and cost, and finally to share the acceptance and challenges in the wind and ocean power development. We focus on energy harvesting techniques of onshore and offshore (both fixed and floating foundations) wind energy as well as ocean energy including ocean thermal energy, wave energy, tidal energy, salinity gradient energy, and bioinspired energy harvesting. Given that the theoretical efficiency of a wind turbine is 59.3% maximum (Betz limit), most wind turbines can produce power with 30%–35% efficiency, which suggests a scope of further efficiency improvement. The overall offshore installation costs are 2.5–3.0 times the onshore costs. The vertical and horizontal axis stream turbines extracting tidal energy have a maximum of 35% efficiency while the shrouded horizontal axis stream turbines may reach 42% efficiency. Galloping turbines with triangular and trapezoidal prisms may have an efficiency up to 40% and 45%, respectively. Ocean wave energy can provide a continuous power supply. The technology however requires further improvement to be of commercial use. The bioinspired energy harvesting techniques are in the infant stages while research work on ocean wave energy and offshore wind power is going on a faster pace compared to other technologies. Recently, flow-induced vibration techniques are getting more attention from the scientific community and developing rapidly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean wave power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tidal energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salinity gradient energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean thermal energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean currents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhems, Luai M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alam, Md. Mahbub</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Longjun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8197-1017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toor, Zakria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">267</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">267</subfield></datafield></record></collection>
|
score |
7.399728 |