The robustness of conceptual rainfall-runoff modelling under climate variability – A review
Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. I...
Ausführliche Beschreibung
Autor*in: |
Ji, Hong Kang [verfasserIn] Mirzaei, Majid [verfasserIn] Lai, Sai Hin [verfasserIn] Dehghani, Adnan [verfasserIn] Dehghani, Amin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 621 |
---|---|
Übergeordnetes Werk: |
volume:621 |
DOI / URN: |
10.1016/j.jhydrol.2023.129666 |
---|
Katalog-ID: |
ELV010021272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010021272 | ||
003 | DE-627 | ||
005 | 20231129093004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2023.129666 |2 doi | |
035 | |a (DE-627)ELV010021272 | ||
035 | |a (ELSEVIER)S0022-1694(23)00608-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Ji, Hong Kang |e verfasserin |0 (orcid)0000-0002-2698-4373 |4 aut | |
245 | 1 | 0 | |a The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. | ||
650 | 4 | |a Conceptual rainfall–runoff modelling | |
650 | 4 | |a Model robustness | |
650 | 4 | |a Model transferability | |
650 | 4 | |a Split-sample tests | |
650 | 4 | |a Climate variability | |
650 | 4 | |a Review | |
700 | 1 | |a Mirzaei, Majid |e verfasserin |0 (orcid)0000-0003-1452-9004 |4 aut | |
700 | 1 | |a Lai, Sai Hin |e verfasserin |4 aut | |
700 | 1 | |a Dehghani, Adnan |e verfasserin |4 aut | |
700 | 1 | |a Dehghani, Amin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 621 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:621 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 621 |
author_variant |
h k j hk hkj m m mm s h l sh shl a d ad a d ad |
---|---|
matchkey_str |
article:18792707:2023----::hrbsnsocnetariflrnfmdligneci |
hierarchy_sort_str |
2023 |
bklnumber |
38.85 |
publishDate |
2023 |
allfields |
10.1016/j.jhydrol.2023.129666 doi (DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Ji, Hong Kang verfasserin (orcid)0000-0002-2698-4373 aut The robustness of conceptual rainfall-runoff modelling under climate variability – A review 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review Mirzaei, Majid verfasserin (orcid)0000-0003-1452-9004 aut Lai, Sai Hin verfasserin aut Dehghani, Adnan verfasserin aut Dehghani, Amin verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 621 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:621 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 621 |
spelling |
10.1016/j.jhydrol.2023.129666 doi (DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Ji, Hong Kang verfasserin (orcid)0000-0002-2698-4373 aut The robustness of conceptual rainfall-runoff modelling under climate variability – A review 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review Mirzaei, Majid verfasserin (orcid)0000-0003-1452-9004 aut Lai, Sai Hin verfasserin aut Dehghani, Adnan verfasserin aut Dehghani, Amin verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 621 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:621 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 621 |
allfields_unstemmed |
10.1016/j.jhydrol.2023.129666 doi (DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Ji, Hong Kang verfasserin (orcid)0000-0002-2698-4373 aut The robustness of conceptual rainfall-runoff modelling under climate variability – A review 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review Mirzaei, Majid verfasserin (orcid)0000-0003-1452-9004 aut Lai, Sai Hin verfasserin aut Dehghani, Adnan verfasserin aut Dehghani, Amin verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 621 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:621 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 621 |
allfieldsGer |
10.1016/j.jhydrol.2023.129666 doi (DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Ji, Hong Kang verfasserin (orcid)0000-0002-2698-4373 aut The robustness of conceptual rainfall-runoff modelling under climate variability – A review 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review Mirzaei, Majid verfasserin (orcid)0000-0003-1452-9004 aut Lai, Sai Hin verfasserin aut Dehghani, Adnan verfasserin aut Dehghani, Amin verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 621 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:621 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 621 |
allfieldsSound |
10.1016/j.jhydrol.2023.129666 doi (DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Ji, Hong Kang verfasserin (orcid)0000-0002-2698-4373 aut The robustness of conceptual rainfall-runoff modelling under climate variability – A review 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review Mirzaei, Majid verfasserin (orcid)0000-0003-1452-9004 aut Lai, Sai Hin verfasserin aut Dehghani, Adnan verfasserin aut Dehghani, Amin verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 621 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:621 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 621 |
language |
English |
source |
Enthalten in Journal of hydrology 621 volume:621 |
sourceStr |
Enthalten in Journal of hydrology 621 volume:621 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Ji, Hong Kang @@aut@@ Mirzaei, Majid @@aut@@ Lai, Sai Hin @@aut@@ Dehghani, Adnan @@aut@@ Dehghani, Amin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV010021272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010021272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231129093004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.129666</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010021272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)00608-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Hong Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2698-4373</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The robustness of conceptual rainfall-runoff modelling under climate variability – A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conceptual rainfall–runoff modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model transferability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split-sample tests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Review</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirzaei, Majid</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1452-9004</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Sai Hin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghani, Adnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghani, Amin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">621</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:621</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">621</subfield></datafield></record></collection>
|
author |
Ji, Hong Kang |
spellingShingle |
Ji, Hong Kang ddc 690 bkl 38.85 misc Conceptual rainfall–runoff modelling misc Model robustness misc Model transferability misc Split-sample tests misc Climate variability misc Review The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
authorStr |
Ji, Hong Kang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 VZ 38.85 bkl The robustness of conceptual rainfall-runoff modelling under climate variability – A review Conceptual rainfall–runoff modelling Model robustness Model transferability Split-sample tests Climate variability Review |
topic |
ddc 690 bkl 38.85 misc Conceptual rainfall–runoff modelling misc Model robustness misc Model transferability misc Split-sample tests misc Climate variability misc Review |
topic_unstemmed |
ddc 690 bkl 38.85 misc Conceptual rainfall–runoff modelling misc Model robustness misc Model transferability misc Split-sample tests misc Climate variability misc Review |
topic_browse |
ddc 690 bkl 38.85 misc Conceptual rainfall–runoff modelling misc Model robustness misc Model transferability misc Split-sample tests misc Climate variability misc Review |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
ctrlnum |
(DE-627)ELV010021272 (ELSEVIER)S0022-1694(23)00608-X |
title_full |
The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
author_sort |
Ji, Hong Kang |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Ji, Hong Kang Mirzaei, Majid Lai, Sai Hin Dehghani, Adnan Dehghani, Amin |
container_volume |
621 |
class |
690 VZ 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ji, Hong Kang |
doi_str_mv |
10.1016/j.jhydrol.2023.129666 |
normlink |
(ORCID)0000-0002-2698-4373 (ORCID)0000-0003-1452-9004 |
normlink_prefix_str_mv |
(orcid)0000-0002-2698-4373 (orcid)0000-0003-1452-9004 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
the robustness of conceptual rainfall-runoff modelling under climate variability – a review |
title_auth |
The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
abstract |
Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. |
abstractGer |
Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. |
abstract_unstemmed |
Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
The robustness of conceptual rainfall-runoff modelling under climate variability – A review |
remote_bool |
true |
author2 |
Mirzaei, Majid Lai, Sai Hin Dehghani, Adnan Dehghani, Amin |
author2Str |
Mirzaei, Majid Lai, Sai Hin Dehghani, Adnan Dehghani, Amin |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2023.129666 |
up_date |
2024-07-06T16:32:53.597Z |
_version_ |
1803848068473290752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010021272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231129093004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.129666</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010021272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)00608-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Hong Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2698-4373</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The robustness of conceptual rainfall-runoff modelling under climate variability – A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conceptual rainfall-runoff (CRR) models are widely used tools in climate change impact studies. However, the assumption that hydroclimate variables are stationary is no longer justifiable when input forcing is significantly different from the hydro-climatological conditions used in model building. It is particularly important to identify and discard such modelling that are unsuitable for future prediction in a calibration/evaluation strategy. Previous literatures have thoroughly investigated the implications of climate change on catchments around the world, but a few studies have systematically assessed the transferability of CRR models. In this paper, the transferability of CRR models in a climate variability context is reviewed. First, the development of the data split methods for examining parameter dependence on climate and the associated objective function with model robustness metrics are presented. Second, by comparing the outcomes collectively, both the robustness assessment of the classic differential split-sample test (DSST) and its variants, such as the large-sample generalized split-sample test (GSST), and linkages between model transferability with non-stationary climate and with catchment characteristics are explored. Among others, we answer the following questions: (1) Under which climatic constraints can models empirically be transferred? (2) Are models more difficult to transfer in catchments with certain characteristics? A set of model transferability criteria that explicitly consider potential failure scenarios at different steps in a data splitting approach is established. Thus a strategy to diagnose model transferability is proposed for routinely assessing the prediction ability of CRR models under various climate conditions, particularly when results are used to inform adaptation decision-making.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conceptual rainfall–runoff modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model transferability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split-sample tests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Review</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirzaei, Majid</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1452-9004</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Sai Hin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghani, Adnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehghani, Amin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">621</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:621</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">621</subfield></datafield></record></collection>
|
score |
7.400943 |