Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor
Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyviny...
Ausführliche Beschreibung
Autor*in: |
Hernández-Rivera, Daniel [verfasserIn] Hernandez-Ramires, Pablo [verfasserIn] Suaste-Gómez, Ernesto [verfasserIn] Agarwal, Vivechana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Optical materials - Amsterdam [u.a.] : Elsevier Science, 1992, 140 |
---|---|
Übergeordnetes Werk: |
volume:140 |
DOI / URN: |
10.1016/j.optmat.2023.113878 |
---|
Katalog-ID: |
ELV010036903 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010036903 | ||
003 | DE-627 | ||
005 | 20230928075545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230530s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optmat.2023.113878 |2 doi | |
035 | |a (DE-627)ELV010036903 | ||
035 | |a (ELSEVIER)S0925-3467(23)00450-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |a 670 |q VZ |
084 | |a 51.45 |2 bkl | ||
084 | |a 33.18 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
084 | |a 50.37 |2 bkl | ||
100 | 1 | |a Hernández-Rivera, Daniel |e verfasserin |0 (orcid)0000-0003-3882-8543 |4 aut | |
245 | 1 | 0 | |a Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. | ||
650 | 4 | |a Porous silicon | |
650 | 4 | |a PVDF | |
650 | 4 | |a Carbon dots | |
650 | 4 | |a Optical sensors | |
650 | 4 | |a β crystalline phase | |
700 | 1 | |a Hernandez-Ramires, Pablo |e verfasserin |4 aut | |
700 | 1 | |a Suaste-Gómez, Ernesto |e verfasserin |0 (orcid)0000-0002-3747-5312 |4 aut | |
700 | 1 | |a Agarwal, Vivechana |e verfasserin |0 (orcid)0000-0003-2168-853X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical materials |d Amsterdam [u.a.] : Elsevier Science, 1992 |g 140 |h Online-Ressource |w (DE-627)320530175 |w (DE-600)2015659-5 |w (DE-576)25948489X |x 1873-1252 |7 nnns |
773 | 1 | 8 | |g volume:140 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |q VZ |
936 | b | k | |a 33.18 |j Optik |q VZ |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |q VZ |
936 | b | k | |a 50.37 |j Technische Optik |q VZ |
951 | |a AR | ||
952 | |d 140 |
author_variant |
d h r dhr p h r phr e s g esg v a va |
---|---|
matchkey_str |
article:18731252:2023----::oosiioplvnldnfurdcrodtbsdot |
hierarchy_sort_str |
2023 |
bklnumber |
51.45 33.18 33.38 50.37 |
publishDate |
2023 |
allfields |
10.1016/j.optmat.2023.113878 doi (DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Hernández-Rivera, Daniel verfasserin (orcid)0000-0003-3882-8543 aut Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. Porous silicon PVDF Carbon dots Optical sensors β crystalline phase Hernandez-Ramires, Pablo verfasserin aut Suaste-Gómez, Ernesto verfasserin (orcid)0000-0002-3747-5312 aut Agarwal, Vivechana verfasserin (orcid)0000-0003-2168-853X aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 140 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:140 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 140 |
spelling |
10.1016/j.optmat.2023.113878 doi (DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Hernández-Rivera, Daniel verfasserin (orcid)0000-0003-3882-8543 aut Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. Porous silicon PVDF Carbon dots Optical sensors β crystalline phase Hernandez-Ramires, Pablo verfasserin aut Suaste-Gómez, Ernesto verfasserin (orcid)0000-0002-3747-5312 aut Agarwal, Vivechana verfasserin (orcid)0000-0003-2168-853X aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 140 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:140 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 140 |
allfields_unstemmed |
10.1016/j.optmat.2023.113878 doi (DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Hernández-Rivera, Daniel verfasserin (orcid)0000-0003-3882-8543 aut Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. Porous silicon PVDF Carbon dots Optical sensors β crystalline phase Hernandez-Ramires, Pablo verfasserin aut Suaste-Gómez, Ernesto verfasserin (orcid)0000-0002-3747-5312 aut Agarwal, Vivechana verfasserin (orcid)0000-0003-2168-853X aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 140 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:140 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 140 |
allfieldsGer |
10.1016/j.optmat.2023.113878 doi (DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Hernández-Rivera, Daniel verfasserin (orcid)0000-0003-3882-8543 aut Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. Porous silicon PVDF Carbon dots Optical sensors β crystalline phase Hernandez-Ramires, Pablo verfasserin aut Suaste-Gómez, Ernesto verfasserin (orcid)0000-0002-3747-5312 aut Agarwal, Vivechana verfasserin (orcid)0000-0003-2168-853X aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 140 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:140 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 140 |
allfieldsSound |
10.1016/j.optmat.2023.113878 doi (DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 DE-627 ger DE-627 rda eng 530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Hernández-Rivera, Daniel verfasserin (orcid)0000-0003-3882-8543 aut Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. Porous silicon PVDF Carbon dots Optical sensors β crystalline phase Hernandez-Ramires, Pablo verfasserin aut Suaste-Gómez, Ernesto verfasserin (orcid)0000-0002-3747-5312 aut Agarwal, Vivechana verfasserin (orcid)0000-0003-2168-853X aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 140 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:140 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.45 Werkstoffe mit besonderen Eigenschaften VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ 50.37 Technische Optik VZ AR 140 |
language |
English |
source |
Enthalten in Optical materials 140 volume:140 |
sourceStr |
Enthalten in Optical materials 140 volume:140 |
format_phy_str_mv |
Article |
bklname |
Werkstoffe mit besonderen Eigenschaften Optik Quantenoptik nichtlineare Optik Technische Optik |
institution |
findex.gbv.de |
topic_facet |
Porous silicon PVDF Carbon dots Optical sensors β crystalline phase |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optical materials |
authorswithroles_txt_mv |
Hernández-Rivera, Daniel @@aut@@ Hernandez-Ramires, Pablo @@aut@@ Suaste-Gómez, Ernesto @@aut@@ Agarwal, Vivechana @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320530175 |
dewey-sort |
3530 |
id |
ELV010036903 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010036903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928075545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2023.113878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010036903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(23)00450-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hernández-Rivera, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3882-8543</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PVDF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β crystalline phase</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernandez-Ramires, Pablo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suaste-Gómez, Ernesto</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3747-5312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agarwal, Vivechana</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2168-853X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">140</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">140</subfield></datafield></record></collection>
|
author |
Hernández-Rivera, Daniel |
spellingShingle |
Hernández-Rivera, Daniel ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Porous silicon misc PVDF misc Carbon dots misc Optical sensors misc β crystalline phase Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
authorStr |
Hernández-Rivera, Daniel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530175 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-1252 |
topic_title |
530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor Porous silicon PVDF Carbon dots Optical sensors β crystalline phase |
topic |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Porous silicon misc PVDF misc Carbon dots misc Optical sensors misc β crystalline phase |
topic_unstemmed |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Porous silicon misc PVDF misc Carbon dots misc Optical sensors misc β crystalline phase |
topic_browse |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Porous silicon misc PVDF misc Carbon dots misc Optical sensors misc β crystalline phase |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optical materials |
hierarchy_parent_id |
320530175 |
dewey-tens |
530 - Physics 620 - Engineering 670 - Manufacturing |
hierarchy_top_title |
Optical materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X |
title |
Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
ctrlnum |
(DE-627)ELV010036903 (ELSEVIER)S0925-3467(23)00450-0 |
title_full |
Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
author_sort |
Hernández-Rivera, Daniel |
journal |
Optical materials |
journalStr |
Optical materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hernández-Rivera, Daniel Hernandez-Ramires, Pablo Suaste-Gómez, Ernesto Agarwal, Vivechana |
container_volume |
140 |
class |
530 620 670 VZ 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hernández-Rivera, Daniel |
doi_str_mv |
10.1016/j.optmat.2023.113878 |
normlink |
(ORCID)0000-0003-3882-8543 (ORCID)0000-0002-3747-5312 (ORCID)0000-0003-2168-853X |
normlink_prefix_str_mv |
(orcid)0000-0003-3882-8543 (orcid)0000-0002-3747-5312 (orcid)0000-0003-2168-853X |
dewey-full |
530 620 670 |
author2-role |
verfasserin |
title_sort |
porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
title_auth |
Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
abstract |
Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. |
abstractGer |
Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. |
abstract_unstemmed |
Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor |
remote_bool |
true |
author2 |
Hernandez-Ramires, Pablo Suaste-Gómez, Ernesto Agarwal, Vivechana |
author2Str |
Hernandez-Ramires, Pablo Suaste-Gómez, Ernesto Agarwal, Vivechana |
ppnlink |
320530175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.optmat.2023.113878 |
up_date |
2024-07-06T16:36:10.005Z |
_version_ |
1803848274423054336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010036903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928075545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2023.113878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010036903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(23)00450-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hernández-Rivera, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3882-8543</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Porous silicon-polyvinylidene fluoride-carbon dots based portable temperature sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optical sensors are an attractive alternative to semiconductor-based sensors for temperature measurement in harsh environments. Based on Porous Silicon (PSi) Fabry-Perot interferometer, this work presents a novel way of sensing temperature with PSi hybrids using a polymeric nanocomposite of polyvinylidene fluoride (PVDF) and carbon dots (CDs). The operation is based on the temperature-induced changes in the refractive index of PVDF, which in turn changes the effective refractive index of the PSi hybrid. The dual temperature sensing was based on the simultaneous monitoring of the peak wavelength redshift of the Fabry-Perot interference fringes, and the measurement of the intensity of the reflectance spectrum at a specific wavelength. Both measurements showed excellent linear responses, with coefficients of determination greater than 0.99, revealing the highest sensitivity of 0.2 nm/°C for the sample with the highest content of CDs. Apart from the enhanced temperature dependence of the dielectric constant of PVDF, which improved the sensitivity of the proposed PSi/PVDF-CDs based sensors, the hybrid structure facilitates the formation of β phase up to 91.8%. The proposed silicon-based temperature sensor being very large-scale integration (VLSI) compatible, open the way towards the possible formation of free-standing PSi/PVDF-CDs films with a possible application as biocompatible micro temperature sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PVDF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β crystalline phase</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernandez-Ramires, Pablo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suaste-Gómez, Ernesto</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3747-5312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agarwal, Vivechana</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2168-853X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">140</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">140</subfield></datafield></record></collection>
|
score |
7.4007235 |