Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe
Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB)...
Ausführliche Beschreibung
Autor*in: |
Huang, Min [verfasserIn] Zhai, Pengcheng [verfasserIn] Morozov, Sergey I. [verfasserIn] Goddard, William A. [verfasserIn] Li, Guodong [verfasserIn] Zhang, Qingjie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of alloys and compounds - Lausanne : Elsevier, 1991, 959 |
---|---|
Übergeordnetes Werk: |
volume:959 |
DOI / URN: |
10.1016/j.jallcom.2023.170429 |
---|
Katalog-ID: |
ELV010045465 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010045465 | ||
003 | DE-627 | ||
005 | 20231203093035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230602s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2023.170429 |2 doi | |
035 | |a (DE-627)ELV010045465 | ||
035 | |a (ELSEVIER)S0925-8388(23)01732-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 540 |q VZ |
084 | |a 51.54 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Huang, Min |e verfasserin |4 aut | |
245 | 1 | 0 | |a Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. | ||
650 | 4 | |a Thermoelectric semiconductor | |
650 | 4 | |a Coherent twin boundary | |
650 | 4 | |a Ductility | |
650 | 4 | |a Strength | |
650 | 4 | |a Dislocation | |
700 | 1 | |a Zhai, Pengcheng |e verfasserin |4 aut | |
700 | 1 | |a Morozov, Sergey I. |e verfasserin |4 aut | |
700 | 1 | |a Goddard, William A. |e verfasserin |4 aut | |
700 | 1 | |a Li, Guodong |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Qingjie |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of alloys and compounds |d Lausanne : Elsevier, 1991 |g 959 |h Online-Ressource |w (DE-627)320504646 |w (DE-600)2012675-X |w (DE-576)098615009 |7 nnns |
773 | 1 | 8 | |g volume:959 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.54 |j Nichteisenmetalle und ihre Legierungen |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
951 | |a AR | ||
952 | |d 959 |
author_variant |
m h mh p z pz s i m si sim w a g wa wag g l gl q z qz |
---|---|
matchkey_str |
huangminzhaipengchengmorozovsergeyigodda:2023----:nierntibudrefrnacnsrntadutltoteme |
hierarchy_sort_str |
2023 |
bklnumber |
51.54 33.61 35.90 |
publishDate |
2023 |
allfields |
10.1016/j.jallcom.2023.170429 doi (DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Huang, Min verfasserin aut Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation Zhai, Pengcheng verfasserin aut Morozov, Sergey I. verfasserin aut Goddard, William A. verfasserin aut Li, Guodong verfasserin aut Zhang, Qingjie verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 959 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:959 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 959 |
spelling |
10.1016/j.jallcom.2023.170429 doi (DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Huang, Min verfasserin aut Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation Zhai, Pengcheng verfasserin aut Morozov, Sergey I. verfasserin aut Goddard, William A. verfasserin aut Li, Guodong verfasserin aut Zhang, Qingjie verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 959 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:959 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 959 |
allfields_unstemmed |
10.1016/j.jallcom.2023.170429 doi (DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Huang, Min verfasserin aut Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation Zhai, Pengcheng verfasserin aut Morozov, Sergey I. verfasserin aut Goddard, William A. verfasserin aut Li, Guodong verfasserin aut Zhang, Qingjie verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 959 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:959 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 959 |
allfieldsGer |
10.1016/j.jallcom.2023.170429 doi (DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Huang, Min verfasserin aut Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation Zhai, Pengcheng verfasserin aut Morozov, Sergey I. verfasserin aut Goddard, William A. verfasserin aut Li, Guodong verfasserin aut Zhang, Qingjie verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 959 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:959 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 959 |
allfieldsSound |
10.1016/j.jallcom.2023.170429 doi (DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 DE-627 ger DE-627 rda eng 670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Huang, Min verfasserin aut Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation Zhai, Pengcheng verfasserin aut Morozov, Sergey I. verfasserin aut Goddard, William A. verfasserin aut Li, Guodong verfasserin aut Zhang, Qingjie verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 959 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:959 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.54 Nichteisenmetalle und ihre Legierungen VZ 33.61 Festkörperphysik VZ 35.90 Festkörperchemie VZ AR 959 |
language |
English |
source |
Enthalten in Journal of alloys and compounds 959 volume:959 |
sourceStr |
Enthalten in Journal of alloys and compounds 959 volume:959 |
format_phy_str_mv |
Article |
bklname |
Nichteisenmetalle und ihre Legierungen Festkörperphysik Festkörperchemie |
institution |
findex.gbv.de |
topic_facet |
Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of alloys and compounds |
authorswithroles_txt_mv |
Huang, Min @@aut@@ Zhai, Pengcheng @@aut@@ Morozov, Sergey I. @@aut@@ Goddard, William A. @@aut@@ Li, Guodong @@aut@@ Zhang, Qingjie @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320504646 |
dewey-sort |
3670 |
id |
ELV010045465 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010045465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231203093035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230602s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.170429</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010045465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)01732-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectric semiconductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent twin boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ductility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Pengcheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morozov, Sergey I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goddard, William A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">959</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:959</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">959</subfield></datafield></record></collection>
|
author |
Huang, Min |
spellingShingle |
Huang, Min ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Thermoelectric semiconductor misc Coherent twin boundary misc Ductility misc Strength misc Dislocation Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
authorStr |
Huang, Min |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504646 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe Thermoelectric semiconductor Coherent twin boundary Ductility Strength Dislocation |
topic |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Thermoelectric semiconductor misc Coherent twin boundary misc Ductility misc Strength misc Dislocation |
topic_unstemmed |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Thermoelectric semiconductor misc Coherent twin boundary misc Ductility misc Strength misc Dislocation |
topic_browse |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Thermoelectric semiconductor misc Coherent twin boundary misc Ductility misc Strength misc Dislocation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of alloys and compounds |
hierarchy_parent_id |
320504646 |
dewey-tens |
670 - Manufacturing 540 - Chemistry |
hierarchy_top_title |
Journal of alloys and compounds |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 |
title |
Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
ctrlnum |
(DE-627)ELV010045465 (ELSEVIER)S0925-8388(23)01732-2 |
title_full |
Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
author_sort |
Huang, Min |
journal |
Journal of alloys and compounds |
journalStr |
Journal of alloys and compounds |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Huang, Min Zhai, Pengcheng Morozov, Sergey I. Goddard, William A. Li, Guodong Zhang, Qingjie |
container_volume |
959 |
class |
670 540 VZ 51.54 bkl 33.61 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Min |
doi_str_mv |
10.1016/j.jallcom.2023.170429 |
dewey-full |
670 540 |
author2-role |
verfasserin |
title_sort |
engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor pbte |
title_auth |
Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
abstract |
Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. |
abstractGer |
Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. |
abstract_unstemmed |
Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe |
remote_bool |
true |
author2 |
Zhai, Pengcheng Morozov, Sergey I. Goddard, William A. Li, Guodong Zhang, Qingjie |
author2Str |
Zhai, Pengcheng Morozov, Sergey I. Goddard, William A. Li, Guodong Zhang, Qingjie |
ppnlink |
320504646 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jallcom.2023.170429 |
up_date |
2024-07-06T16:38:03.373Z |
_version_ |
1803848393296969728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010045465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231203093035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230602s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2023.170429</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010045465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(23)01732-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Twin boundary engineering is a potential strategy for achieving robust mechanical properties of materials. Our previous molecular dynamics simulations indicated that the nanotwin could significantly enhance the ductility of thermoelectric (TE) semiconductors PbTe due to coherent twin boundary (CTB) migration accompanied by the ‘catching bond’ at room temperature. To further improve the mechanical strength or ductility of PbTe, we investigated the role of the shear direction, the CTB orientation and the temperature on mechanical properties of nanotwinned PbTe. Under the shear stress along [ 1 1 ̅ 0 ] loading direction, the partial dislocations with a/6 [1 2 ̅ 1] and a/6 [2 1 ̅ 1 ̅ ] Burgers vectors are preferentially activated on (111) twin plane with higher yield strength and ultimate shear strength than that of the (111)[11 2 ̅ ] slip system. The nanotwinned PbTe with CTB orientation ranging from 125° to 161° has both higher fracture strain and larger ultimate shear strength than 0° CTB orientation. This is attributed to the motion of the twinning partial dislocation significantly enhancing the ductility while the blocking of dislocations by CTBs further improving the shear strength and deformability of PbTe. Moreover, the low temperature (below 100 K) energetically enables the partial dislocation to nucleate and glide on the strong Te-CTB plane, which induces successive CTB migration along Pb- and Te-CTB planes, resulting in enhanced ductility of nanotwinned PbTe.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectric semiconductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent twin boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ductility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Pengcheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morozov, Sergey I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goddard, William A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">959</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:959</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">959</subfield></datafield></record></collection>
|
score |
7.3992653 |