Vortex interaction in triple flickering buoyant diffusion flames
Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observ...
Ausführliche Beschreibung
Autor*in: |
Yang, Tao [verfasserIn] Chi, Yicheng [verfasserIn] Zhang, Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the Combustion Institute - Combustion Institute ; ID: gnd/1004025-0, Amsterdam [u.a.] : Elsevier, 2000, 39, Seite 1893-1903 |
---|---|
Übergeordnetes Werk: |
volume:39 ; pages:1893-1903 |
DOI / URN: |
10.1016/j.proci.2022.07.011 |
---|
Katalog-ID: |
ELV010208062 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010208062 | ||
003 | DE-627 | ||
005 | 20231205154027.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230609s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.proci.2022.07.011 |2 doi | |
035 | |a (DE-627)ELV010208062 | ||
035 | |a (ELSEVIER)S1540-7489(22)00038-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Yang, Tao |e verfasserin |0 (orcid)0000-0001-6070-2715 |4 aut | |
245 | 1 | 0 | |a Vortex interaction in triple flickering buoyant diffusion flames |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. | ||
650 | 4 | |a Flickering flame | |
650 | 4 | |a Dynamical mode | |
650 | 4 | |a Toroidal vortex | |
650 | 4 | |a Vortex interaction | |
650 | 4 | |a Vorticity reconnection | |
700 | 1 | |a Chi, Yicheng |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Peng |e verfasserin |0 (orcid)0000-0002-1806-4200 |4 aut | |
773 | 0 | 8 | |i Enthalten in |a Combustion Institute ; ID: gnd/1004025-0 |t Proceedings of the Combustion Institute |d Amsterdam [u.a.] : Elsevier, 2000 |g 39, Seite 1893-1903 |h Online-Ressource |w (DE-627)495741140 |w (DE-600)2197968-6 |w (DE-576)259486582 |x 1873-2704 |7 nnns |
773 | 1 | 8 | |g volume:39 |g pages:1893-1903 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4251 | ||
951 | |a AR | ||
952 | |d 39 |h 1893-1903 |
author_variant |
t y ty y c yc p z pz |
---|---|
matchkey_str |
article:18732704:2022----::otxneatoitilfikrnboat |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.proci.2022.07.011 doi (DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 DE-627 ger DE-627 rda eng 660 VZ Yang, Tao verfasserin (orcid)0000-0001-6070-2715 aut Vortex interaction in triple flickering buoyant diffusion flames 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection Chi, Yicheng verfasserin aut Zhang, Peng verfasserin (orcid)0000-0002-1806-4200 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 39, Seite 1893-1903 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:39 pages:1893-1903 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 AR 39 1893-1903 |
spelling |
10.1016/j.proci.2022.07.011 doi (DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 DE-627 ger DE-627 rda eng 660 VZ Yang, Tao verfasserin (orcid)0000-0001-6070-2715 aut Vortex interaction in triple flickering buoyant diffusion flames 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection Chi, Yicheng verfasserin aut Zhang, Peng verfasserin (orcid)0000-0002-1806-4200 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 39, Seite 1893-1903 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:39 pages:1893-1903 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 AR 39 1893-1903 |
allfields_unstemmed |
10.1016/j.proci.2022.07.011 doi (DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 DE-627 ger DE-627 rda eng 660 VZ Yang, Tao verfasserin (orcid)0000-0001-6070-2715 aut Vortex interaction in triple flickering buoyant diffusion flames 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection Chi, Yicheng verfasserin aut Zhang, Peng verfasserin (orcid)0000-0002-1806-4200 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 39, Seite 1893-1903 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:39 pages:1893-1903 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 AR 39 1893-1903 |
allfieldsGer |
10.1016/j.proci.2022.07.011 doi (DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 DE-627 ger DE-627 rda eng 660 VZ Yang, Tao verfasserin (orcid)0000-0001-6070-2715 aut Vortex interaction in triple flickering buoyant diffusion flames 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection Chi, Yicheng verfasserin aut Zhang, Peng verfasserin (orcid)0000-0002-1806-4200 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 39, Seite 1893-1903 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:39 pages:1893-1903 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 AR 39 1893-1903 |
allfieldsSound |
10.1016/j.proci.2022.07.011 doi (DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 DE-627 ger DE-627 rda eng 660 VZ Yang, Tao verfasserin (orcid)0000-0001-6070-2715 aut Vortex interaction in triple flickering buoyant diffusion flames 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection Chi, Yicheng verfasserin aut Zhang, Peng verfasserin (orcid)0000-0002-1806-4200 aut Enthalten in Combustion Institute ; ID: gnd/1004025-0 Proceedings of the Combustion Institute Amsterdam [u.a.] : Elsevier, 2000 39, Seite 1893-1903 Online-Ressource (DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 1873-2704 nnns volume:39 pages:1893-1903 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 AR 39 1893-1903 |
language |
English |
source |
Enthalten in Proceedings of the Combustion Institute 39, Seite 1893-1903 volume:39 pages:1893-1903 |
sourceStr |
Enthalten in Proceedings of the Combustion Institute 39, Seite 1893-1903 volume:39 pages:1893-1903 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the Combustion Institute |
authorswithroles_txt_mv |
Yang, Tao @@aut@@ Chi, Yicheng @@aut@@ Zhang, Peng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
495741140 |
dewey-sort |
3660 |
id |
ELV010208062 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010208062</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.proci.2022.07.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010208062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1540-7489(22)00038-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6070-2715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vortex interaction in triple flickering buoyant diffusion flames</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flickering flame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toroidal vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vorticity reconnection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, Yicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1806-4200</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Combustion Institute ; ID: gnd/1004025-0</subfield><subfield code="t">Proceedings of the Combustion Institute</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2000</subfield><subfield code="g">39, Seite 1893-1903</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)495741140</subfield><subfield code="w">(DE-600)2197968-6</subfield><subfield code="w">(DE-576)259486582</subfield><subfield code="x">1873-2704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">pages:1893-1903</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="h">1893-1903</subfield></datafield></record></collection>
|
author |
Yang, Tao |
spellingShingle |
Yang, Tao ddc 660 misc Flickering flame misc Dynamical mode misc Toroidal vortex misc Vortex interaction misc Vorticity reconnection Vortex interaction in triple flickering buoyant diffusion flames |
authorStr |
Yang, Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)495741140 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2704 |
topic_title |
660 VZ Vortex interaction in triple flickering buoyant diffusion flames Flickering flame Dynamical mode Toroidal vortex Vortex interaction Vorticity reconnection |
topic |
ddc 660 misc Flickering flame misc Dynamical mode misc Toroidal vortex misc Vortex interaction misc Vorticity reconnection |
topic_unstemmed |
ddc 660 misc Flickering flame misc Dynamical mode misc Toroidal vortex misc Vortex interaction misc Vorticity reconnection |
topic_browse |
ddc 660 misc Flickering flame misc Dynamical mode misc Toroidal vortex misc Vortex interaction misc Vorticity reconnection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Proceedings of the Combustion Institute |
hierarchy_parent_id |
495741140 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Proceedings of the Combustion Institute |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)495741140 (DE-600)2197968-6 (DE-576)259486582 |
title |
Vortex interaction in triple flickering buoyant diffusion flames |
ctrlnum |
(DE-627)ELV010208062 (ELSEVIER)S1540-7489(22)00038-4 |
title_full |
Vortex interaction in triple flickering buoyant diffusion flames |
author_sort |
Yang, Tao |
journal |
Proceedings of the Combustion Institute |
journalStr |
Proceedings of the Combustion Institute |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
1893 |
author_browse |
Yang, Tao Chi, Yicheng Zhang, Peng |
container_volume |
39 |
class |
660 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Tao |
doi_str_mv |
10.1016/j.proci.2022.07.011 |
normlink |
(ORCID)0000-0001-6070-2715 (ORCID)0000-0002-1806-4200 |
normlink_prefix_str_mv |
(orcid)0000-0001-6070-2715 (orcid)0000-0002-1806-4200 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
vortex interaction in triple flickering buoyant diffusion flames |
title_auth |
Vortex interaction in triple flickering buoyant diffusion flames |
abstract |
Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. |
abstractGer |
Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. |
abstract_unstemmed |
Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_2004 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_4251 |
title_short |
Vortex interaction in triple flickering buoyant diffusion flames |
remote_bool |
true |
author2 |
Chi, Yicheng Zhang, Peng |
author2Str |
Chi, Yicheng Zhang, Peng |
ppnlink |
495741140 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.proci.2022.07.011 |
up_date |
2024-07-06T17:11:43.503Z |
_version_ |
1803850511554707457 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010208062</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.proci.2022.07.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010208062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1540-7489(22)00038-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6070-2715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vortex interaction in triple flickering buoyant diffusion flames</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Triple flickering buoyant diffusion flames of methane gas in equilateral triangle arrangement, as a nonlinear dynamical system of coupled oscillators, were computationally investigated. The four distinct dynamical modes (in-phase, death, rotation, and partially in-phase), that were originally observed in candle-flame experiments, were computationally reproduced for the first time. The four modes were interpreted from the perspective of vortex interaction and particularly of vorticity reconnection and vortex-induced flow. Specifically, the in-phase mode is caused by the periodic shedding of the trefoil vortex formed by the reconnection of three toroidal vortices; the death mode is due to the suppression of vortex shedding at small Reynolds numbers; the rotation mode appears as three toroidal vortices alternatively shed off with a constant phase difference; the partially in-phase model is caused by the vorticity reconnection of two toroidal vortices leaving another one shedding off in anti-phase. This work well establishes a bridge between the vortex dynamics and the nonlinear dynamics of the triple-flame system, which is believed to play a key role in understanding larger dynamical systems of multiple flickering flames.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flickering flame</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toroidal vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vorticity reconnection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, Yicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1806-4200</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Combustion Institute ; ID: gnd/1004025-0</subfield><subfield code="t">Proceedings of the Combustion Institute</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2000</subfield><subfield code="g">39, Seite 1893-1903</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)495741140</subfield><subfield code="w">(DE-600)2197968-6</subfield><subfield code="w">(DE-576)259486582</subfield><subfield code="x">1873-2704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">pages:1893-1903</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="h">1893-1903</subfield></datafield></record></collection>
|
score |
7.401372 |