Multi-hub hydrogen refueling station with on-site and centralized production
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels uti...
Ausführliche Beschreibung
Autor*in: |
Bartolucci, L. [verfasserIn] Cordiner, S. [verfasserIn] Mulone, V. [verfasserIn] Tatangelo, C. [verfasserIn] Antonelli, M. [verfasserIn] Romagnuolo, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of hydrogen energy - New York, NY [u.a.] : Elsevier, 1976, 48 |
---|---|
Übergeordnetes Werk: |
volume:48 |
DOI / URN: |
10.1016/j.ijhydene.2023.01.094 |
---|
Katalog-ID: |
ELV010226702 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010226702 | ||
003 | DE-627 | ||
005 | 20231212093007.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230609s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2023.01.094 |2 doi | |
035 | |a (DE-627)ELV010226702 | ||
035 | |a (ELSEVIER)S0360-3199(23)00117-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Bartolucci, L. |e verfasserin |0 (orcid)0000-0003-4258-4860 |4 aut | |
245 | 1 | 0 | |a Multi-hub hydrogen refueling station with on-site and centralized production |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). | ||
650 | 4 | |a Hydrogen refueling station | |
650 | 4 | |a Sustainable mobility | |
650 | 4 | |a Steam methane reforming | |
650 | 4 | |a Hydrogen | |
650 | 4 | |a Electrolyzer | |
700 | 1 | |a Cordiner, S. |e verfasserin |4 aut | |
700 | 1 | |a Mulone, V. |e verfasserin |4 aut | |
700 | 1 | |a Tatangelo, C. |e verfasserin |4 aut | |
700 | 1 | |a Antonelli, M. |e verfasserin |4 aut | |
700 | 1 | |a Romagnuolo, S. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of hydrogen energy |d New York, NY [u.a.] : Elsevier, 1976 |g 48 |h Online-Ressource |w (DE-627)301511357 |w (DE-600)1484487-4 |w (DE-576)096806397 |x 1879-3487 |7 nnns |
773 | 1 | 8 | |g volume:48 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 48 |
author_variant |
l b lb s c sc v m vm c t ct m a ma s r sr |
---|---|
matchkey_str |
article:18793487:2023----::uthbyrgneulnsainihniencn |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.ijhydene.2023.01.094 doi (DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bartolucci, L. verfasserin (orcid)0000-0003-4258-4860 aut Multi-hub hydrogen refueling station with on-site and centralized production 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer Cordiner, S. verfasserin aut Mulone, V. verfasserin aut Tatangelo, C. verfasserin aut Antonelli, M. verfasserin aut Romagnuolo, S. verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
spelling |
10.1016/j.ijhydene.2023.01.094 doi (DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bartolucci, L. verfasserin (orcid)0000-0003-4258-4860 aut Multi-hub hydrogen refueling station with on-site and centralized production 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer Cordiner, S. verfasserin aut Mulone, V. verfasserin aut Tatangelo, C. verfasserin aut Antonelli, M. verfasserin aut Romagnuolo, S. verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfields_unstemmed |
10.1016/j.ijhydene.2023.01.094 doi (DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bartolucci, L. verfasserin (orcid)0000-0003-4258-4860 aut Multi-hub hydrogen refueling station with on-site and centralized production 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer Cordiner, S. verfasserin aut Mulone, V. verfasserin aut Tatangelo, C. verfasserin aut Antonelli, M. verfasserin aut Romagnuolo, S. verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsGer |
10.1016/j.ijhydene.2023.01.094 doi (DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bartolucci, L. verfasserin (orcid)0000-0003-4258-4860 aut Multi-hub hydrogen refueling station with on-site and centralized production 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer Cordiner, S. verfasserin aut Mulone, V. verfasserin aut Tatangelo, C. verfasserin aut Antonelli, M. verfasserin aut Romagnuolo, S. verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsSound |
10.1016/j.ijhydene.2023.01.094 doi (DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Bartolucci, L. verfasserin (orcid)0000-0003-4258-4860 aut Multi-hub hydrogen refueling station with on-site and centralized production 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer Cordiner, S. verfasserin aut Mulone, V. verfasserin aut Tatangelo, C. verfasserin aut Antonelli, M. verfasserin aut Romagnuolo, S. verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
language |
English |
source |
Enthalten in International journal of hydrogen energy 48 volume:48 |
sourceStr |
Enthalten in International journal of hydrogen energy 48 volume:48 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
International journal of hydrogen energy |
authorswithroles_txt_mv |
Bartolucci, L. @@aut@@ Cordiner, S. @@aut@@ Mulone, V. @@aut@@ Tatangelo, C. @@aut@@ Antonelli, M. @@aut@@ Romagnuolo, S. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
301511357 |
dewey-sort |
3660 |
id |
ELV010226702 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010226702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231212093007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.01.094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010226702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)00117-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bartolucci, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4258-4860</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-hub hydrogen refueling station with on-site and centralized production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen refueling station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steam methane reforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyzer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cordiner, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mulone, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tatangelo, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonelli, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romagnuolo, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
author |
Bartolucci, L. |
spellingShingle |
Bartolucci, L. ddc 660 bkl 52.56 misc Hydrogen refueling station misc Sustainable mobility misc Steam methane reforming misc Hydrogen misc Electrolyzer Multi-hub hydrogen refueling station with on-site and centralized production |
authorStr |
Bartolucci, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511357 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3487 |
topic_title |
660 620 VZ 52.56 bkl Multi-hub hydrogen refueling station with on-site and centralized production Hydrogen refueling station Sustainable mobility Steam methane reforming Hydrogen Electrolyzer |
topic |
ddc 660 bkl 52.56 misc Hydrogen refueling station misc Sustainable mobility misc Steam methane reforming misc Hydrogen misc Electrolyzer |
topic_unstemmed |
ddc 660 bkl 52.56 misc Hydrogen refueling station misc Sustainable mobility misc Steam methane reforming misc Hydrogen misc Electrolyzer |
topic_browse |
ddc 660 bkl 52.56 misc Hydrogen refueling station misc Sustainable mobility misc Steam methane reforming misc Hydrogen misc Electrolyzer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of hydrogen energy |
hierarchy_parent_id |
301511357 |
dewey-tens |
660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
International journal of hydrogen energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 |
title |
Multi-hub hydrogen refueling station with on-site and centralized production |
ctrlnum |
(DE-627)ELV010226702 (ELSEVIER)S0360-3199(23)00117-9 |
title_full |
Multi-hub hydrogen refueling station with on-site and centralized production |
author_sort |
Bartolucci, L. |
journal |
International journal of hydrogen energy |
journalStr |
International journal of hydrogen energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Bartolucci, L. Cordiner, S. Mulone, V. Tatangelo, C. Antonelli, M. Romagnuolo, S. |
container_volume |
48 |
class |
660 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bartolucci, L. |
doi_str_mv |
10.1016/j.ijhydene.2023.01.094 |
normlink |
(ORCID)0000-0003-4258-4860 |
normlink_prefix_str_mv |
(orcid)0000-0003-4258-4860 |
dewey-full |
660 620 |
author2-role |
verfasserin |
title_sort |
multi-hub hydrogen refueling station with on-site and centralized production |
title_auth |
Multi-hub hydrogen refueling station with on-site and centralized production |
abstract |
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). |
abstractGer |
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). |
abstract_unstemmed |
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Multi-hub hydrogen refueling station with on-site and centralized production |
remote_bool |
true |
author2 |
Cordiner, S. Mulone, V. Tatangelo, C. Antonelli, M. Romagnuolo, S. |
author2Str |
Cordiner, S. Mulone, V. Tatangelo, C. Antonelli, M. Romagnuolo, S. |
ppnlink |
301511357 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijhydene.2023.01.094 |
up_date |
2024-07-06T17:15:43.446Z |
_version_ |
1803850763152130048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010226702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231212093007.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.01.094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010226702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)00117-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bartolucci, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4258-4860</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-hub hydrogen refueling station with on-site and centralized production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen refueling station</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steam methane reforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyzer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cordiner, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mulone, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tatangelo, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonelli, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romagnuolo, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
score |
7.399441 |