Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China
Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorizatio...
Ausführliche Beschreibung
Autor*in: |
Fu, Zhongbiao [verfasserIn] He, Ningjie [verfasserIn] Ma, Ming [verfasserIn] Bao, Zhengyu [verfasserIn] Xie, Shuyun [verfasserIn] Gu, Yansheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geochemical exploration - Amsterdam : Elsevier Science, 1972, 251 |
---|---|
Übergeordnetes Werk: |
volume:251 |
DOI / URN: |
10.1016/j.gexplo.2023.107241 |
---|
Katalog-ID: |
ELV010246401 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010246401 | ||
003 | DE-627 | ||
005 | 20231029093052.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230610s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gexplo.2023.107241 |2 doi | |
035 | |a (DE-627)ELV010246401 | ||
035 | |a (ELSEVIER)S0375-6742(23)00088-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.32 |2 bkl | ||
100 | 1 | |a Fu, Zhongbiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. | ||
650 | 4 | |a Heavy metals | |
650 | 4 | |a Selenium-rich soil | |
650 | 4 | |a Risk assessment | |
650 | 4 | |a Source apportionment | |
650 | 4 | |a Monte Carlo simulation | |
700 | 1 | |a He, Ningjie |e verfasserin |4 aut | |
700 | 1 | |a Ma, Ming |e verfasserin |4 aut | |
700 | 1 | |a Bao, Zhengyu |e verfasserin |4 aut | |
700 | 1 | |a Xie, Shuyun |e verfasserin |4 aut | |
700 | 1 | |a Gu, Yansheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of geochemical exploration |d Amsterdam : Elsevier Science, 1972 |g 251 |h Online-Ressource |w (DE-627)303392282 |w (DE-600)1494778-X |w (DE-576)259484016 |7 nnns |
773 | 1 | 8 | |g volume:251 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.32 |j Geochemie |q VZ |
951 | |a AR | ||
952 | |d 251 |
author_variant |
z f zf n h nh m m mm z b zb s x sx y g yg |
---|---|
matchkey_str |
fuzhongbiaoheningjiemamingbaozhengyuxies:2023----:orepotomnadrbblsirsassmnohayeasneeimi |
hierarchy_sort_str |
2023 |
bklnumber |
38.32 |
publishDate |
2023 |
allfields |
10.1016/j.gexplo.2023.107241 doi (DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Fu, Zhongbiao verfasserin aut Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation He, Ningjie verfasserin aut Ma, Ming verfasserin aut Bao, Zhengyu verfasserin aut Xie, Shuyun verfasserin aut Gu, Yansheng verfasserin aut Enthalten in Journal of geochemical exploration Amsterdam : Elsevier Science, 1972 251 Online-Ressource (DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 nnns volume:251 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 251 |
spelling |
10.1016/j.gexplo.2023.107241 doi (DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Fu, Zhongbiao verfasserin aut Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation He, Ningjie verfasserin aut Ma, Ming verfasserin aut Bao, Zhengyu verfasserin aut Xie, Shuyun verfasserin aut Gu, Yansheng verfasserin aut Enthalten in Journal of geochemical exploration Amsterdam : Elsevier Science, 1972 251 Online-Ressource (DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 nnns volume:251 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 251 |
allfields_unstemmed |
10.1016/j.gexplo.2023.107241 doi (DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Fu, Zhongbiao verfasserin aut Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation He, Ningjie verfasserin aut Ma, Ming verfasserin aut Bao, Zhengyu verfasserin aut Xie, Shuyun verfasserin aut Gu, Yansheng verfasserin aut Enthalten in Journal of geochemical exploration Amsterdam : Elsevier Science, 1972 251 Online-Ressource (DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 nnns volume:251 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 251 |
allfieldsGer |
10.1016/j.gexplo.2023.107241 doi (DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Fu, Zhongbiao verfasserin aut Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation He, Ningjie verfasserin aut Ma, Ming verfasserin aut Bao, Zhengyu verfasserin aut Xie, Shuyun verfasserin aut Gu, Yansheng verfasserin aut Enthalten in Journal of geochemical exploration Amsterdam : Elsevier Science, 1972 251 Online-Ressource (DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 nnns volume:251 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 251 |
allfieldsSound |
10.1016/j.gexplo.2023.107241 doi (DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Fu, Zhongbiao verfasserin aut Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation He, Ningjie verfasserin aut Ma, Ming verfasserin aut Bao, Zhengyu verfasserin aut Xie, Shuyun verfasserin aut Gu, Yansheng verfasserin aut Enthalten in Journal of geochemical exploration Amsterdam : Elsevier Science, 1972 251 Online-Ressource (DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 nnns volume:251 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 251 |
language |
English |
source |
Enthalten in Journal of geochemical exploration 251 volume:251 |
sourceStr |
Enthalten in Journal of geochemical exploration 251 volume:251 |
format_phy_str_mv |
Article |
bklname |
Geochemie |
institution |
findex.gbv.de |
topic_facet |
Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geochemical exploration |
authorswithroles_txt_mv |
Fu, Zhongbiao @@aut@@ He, Ningjie @@aut@@ Ma, Ming @@aut@@ Bao, Zhengyu @@aut@@ Xie, Shuyun @@aut@@ Gu, Yansheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
303392282 |
dewey-sort |
3550 |
id |
ELV010246401 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010246401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231029093052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gexplo.2023.107241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010246401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-6742(23)00088-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Zhongbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selenium-rich soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source apportionment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Ningjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Zhengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Shuyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geochemical exploration</subfield><subfield code="d">Amsterdam : Elsevier Science, 1972</subfield><subfield code="g">251</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303392282</subfield><subfield code="w">(DE-600)1494778-X</subfield><subfield code="w">(DE-576)259484016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">251</subfield></datafield></record></collection>
|
author |
Fu, Zhongbiao |
spellingShingle |
Fu, Zhongbiao ddc 550 bkl 38.32 misc Heavy metals misc Selenium-rich soil misc Risk assessment misc Source apportionment misc Monte Carlo simulation Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
authorStr |
Fu, Zhongbiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)303392282 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 VZ 38.32 bkl Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China Heavy metals Selenium-rich soil Risk assessment Source apportionment Monte Carlo simulation |
topic |
ddc 550 bkl 38.32 misc Heavy metals misc Selenium-rich soil misc Risk assessment misc Source apportionment misc Monte Carlo simulation |
topic_unstemmed |
ddc 550 bkl 38.32 misc Heavy metals misc Selenium-rich soil misc Risk assessment misc Source apportionment misc Monte Carlo simulation |
topic_browse |
ddc 550 bkl 38.32 misc Heavy metals misc Selenium-rich soil misc Risk assessment misc Source apportionment misc Monte Carlo simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of geochemical exploration |
hierarchy_parent_id |
303392282 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geochemical exploration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)303392282 (DE-600)1494778-X (DE-576)259484016 |
title |
Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
ctrlnum |
(DE-627)ELV010246401 (ELSEVIER)S0375-6742(23)00088-2 |
title_full |
Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
author_sort |
Fu, Zhongbiao |
journal |
Journal of geochemical exploration |
journalStr |
Journal of geochemical exploration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Fu, Zhongbiao He, Ningjie Ma, Ming Bao, Zhengyu Xie, Shuyun Gu, Yansheng |
container_volume |
251 |
class |
550 VZ 38.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Fu, Zhongbiao |
doi_str_mv |
10.1016/j.gexplo.2023.107241 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in hainan province, china |
title_auth |
Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
abstract |
Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. |
abstractGer |
Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. |
abstract_unstemmed |
Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China |
remote_bool |
true |
author2 |
He, Ningjie Ma, Ming Bao, Zhengyu Xie, Shuyun Gu, Yansheng |
author2Str |
He, Ningjie Ma, Ming Bao, Zhengyu Xie, Shuyun Gu, Yansheng |
ppnlink |
303392282 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.gexplo.2023.107241 |
up_date |
2024-07-06T17:19:50.494Z |
_version_ |
1803851022201782272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010246401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231029093052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gexplo.2023.107241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010246401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-6742(23)00088-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Zhongbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Source apportionment and probabilistic risk assessment of heavy metals in selenium-rich soils in Hainan Province, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Heavy metal (HM) contamination severely restricts the safe utilization of selenium (Se)-rich soil. Based on 10 HMs in 3933 topsoil samples from Se-rich soils in Hainan Province, we used the enrichment factor (EF) to evaluate the pollution level of soil HMs; moreover, the positive matrix factorization (PMF), multivariate statistical analysis, and geostatistics were utilized to quantify the sources of soil HMs; and potential ecological risk index (RI) and human health risk (HHR) of different sources from five land use types were quantifiably determined via combined HM sources with RI and HHR assessment models. The evaluation results of EF showed that the Se-rich soils were moderate enrichment of Hg and Sb, but they were still characterized by lower content compared to other regions of the world. And four sources were quantitatively identified as natural sources (40.8 %), industrial sources (22.3 %), agricultural sources (23.6 %), and atmospheric sources (13.3 %). For RI, the atmospheric source was the main anthropogenic contributor to plowland, urban land, woodland, and unused land with 24 %, 30 %, 25 %, and 26 %, respectively, and Hg was the most dangerous element. But the contribution of industrial sources (25 %) to RI in the garden-land was higher than that of atmospheric sources (23 %). In terms of HHR, industrial sources were the primary anthropogenic contributors. Children were exposed to slight health risks, with Cr, As and Pb being the major contributors, and the cumulative probability of non-cancer and cancer risks for children was 14.93 % and 25.29 %, respectively. The cancer risk for children in garden-land (1.2E-04) and plowland (1.3E-04) exceeded the threshold (1.0E-04), which requires attention. Both non-cancer and cancer risks for adults were all at acceptable levels, with only a 15.89 % cumulative probability of cancer risk. Overall, the health risks of children were clearly higher than those of adults, and plowland and garden-land were at higher HMs risk than other land use types. The HMs risks in the study area were profoundly affected by the basalt, while the input of HMs from anthropogenic activities should be prioritized for the control of industrial activities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selenium-rich soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source apportionment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Ningjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Zhengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Shuyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geochemical exploration</subfield><subfield code="d">Amsterdam : Elsevier Science, 1972</subfield><subfield code="g">251</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303392282</subfield><subfield code="w">(DE-600)1494778-X</subfield><subfield code="w">(DE-576)259484016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">251</subfield></datafield></record></collection>
|
score |
7.402316 |