Row-strict dual immaculate functions
We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Berg...
Ausführliche Beschreibung
Autor*in: |
Niese, Elizabeth [verfasserIn] Sundaram, Sheila [verfasserIn] van Willigenburg, Stephanie [verfasserIn] Vega, Julianne [verfasserIn] Wang, Shiyun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in applied mathematics - Amsterdam [u.a.] : Elsevier, 1980, 149 |
---|---|
Übergeordnetes Werk: |
volume:149 |
DOI / URN: |
10.1016/j.aam.2023.102540 |
---|
Katalog-ID: |
ELV010276068 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010276068 | ||
003 | DE-627 | ||
005 | 20230610073422.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230610s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aam.2023.102540 |2 doi | |
035 | |a (DE-627)ELV010276068 | ||
035 | |a (ELSEVIER)S0196-8858(23)00058-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.80 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Niese, Elizabeth |e verfasserin |0 (orcid)0000-0003-3596-5630 |4 aut | |
245 | 1 | 0 | |a Row-strict dual immaculate functions |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. | ||
650 | 4 | |a Composition | |
650 | 4 | |a Creation operator | |
650 | 4 | |a Dual immaculate function | |
650 | 4 | |a Hook Schur function | |
650 | 4 | |a Hopf algebra | |
650 | 4 | |a Pieri rule | |
650 | 4 | |a Quasisymmetric function | |
650 | 4 | |a Schur function | |
650 | 4 | |a Skew Schur function | |
650 | 4 | |a Tableau combinatorics | |
700 | 1 | |a Sundaram, Sheila |e verfasserin |4 aut | |
700 | 1 | |a van Willigenburg, Stephanie |e verfasserin |4 aut | |
700 | 1 | |a Vega, Julianne |e verfasserin |4 aut | |
700 | 1 | |a Wang, Shiyun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in applied mathematics |d Amsterdam [u.a.] : Elsevier, 1980 |g 149 |h Online-Ressource |w (DE-627)25378011X |w (DE-600)1460437-1 |w (DE-576)104082003 |7 nnns |
773 | 1 | 8 | |g volume:149 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.80 |j Angewandte Mathematik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 149 |
author_variant |
e n en s s ss w s v ws wsv j v jv s w sw |
---|---|
matchkey_str |
nieseelizabethsundaramsheilavanwilligenb:2023----:osrcdaimcltf |
hierarchy_sort_str |
2023 |
bklnumber |
31.80 31.00 |
publishDate |
2023 |
allfields |
10.1016/j.aam.2023.102540 doi (DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl 31.00 bkl Niese, Elizabeth verfasserin (orcid)0000-0003-3596-5630 aut Row-strict dual immaculate functions 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics Sundaram, Sheila verfasserin aut van Willigenburg, Stephanie verfasserin aut Vega, Julianne verfasserin aut Wang, Shiyun verfasserin aut Enthalten in Advances in applied mathematics Amsterdam [u.a.] : Elsevier, 1980 149 Online-Ressource (DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ 31.00 Mathematik: Allgemeines VZ AR 149 |
spelling |
10.1016/j.aam.2023.102540 doi (DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl 31.00 bkl Niese, Elizabeth verfasserin (orcid)0000-0003-3596-5630 aut Row-strict dual immaculate functions 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics Sundaram, Sheila verfasserin aut van Willigenburg, Stephanie verfasserin aut Vega, Julianne verfasserin aut Wang, Shiyun verfasserin aut Enthalten in Advances in applied mathematics Amsterdam [u.a.] : Elsevier, 1980 149 Online-Ressource (DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ 31.00 Mathematik: Allgemeines VZ AR 149 |
allfields_unstemmed |
10.1016/j.aam.2023.102540 doi (DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl 31.00 bkl Niese, Elizabeth verfasserin (orcid)0000-0003-3596-5630 aut Row-strict dual immaculate functions 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics Sundaram, Sheila verfasserin aut van Willigenburg, Stephanie verfasserin aut Vega, Julianne verfasserin aut Wang, Shiyun verfasserin aut Enthalten in Advances in applied mathematics Amsterdam [u.a.] : Elsevier, 1980 149 Online-Ressource (DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ 31.00 Mathematik: Allgemeines VZ AR 149 |
allfieldsGer |
10.1016/j.aam.2023.102540 doi (DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl 31.00 bkl Niese, Elizabeth verfasserin (orcid)0000-0003-3596-5630 aut Row-strict dual immaculate functions 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics Sundaram, Sheila verfasserin aut van Willigenburg, Stephanie verfasserin aut Vega, Julianne verfasserin aut Wang, Shiyun verfasserin aut Enthalten in Advances in applied mathematics Amsterdam [u.a.] : Elsevier, 1980 149 Online-Ressource (DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ 31.00 Mathematik: Allgemeines VZ AR 149 |
allfieldsSound |
10.1016/j.aam.2023.102540 doi (DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 DE-627 ger DE-627 rda eng 510 VZ 31.80 bkl 31.00 bkl Niese, Elizabeth verfasserin (orcid)0000-0003-3596-5630 aut Row-strict dual immaculate functions 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics Sundaram, Sheila verfasserin aut van Willigenburg, Stephanie verfasserin aut Vega, Julianne verfasserin aut Wang, Shiyun verfasserin aut Enthalten in Advances in applied mathematics Amsterdam [u.a.] : Elsevier, 1980 149 Online-Ressource (DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.80 Angewandte Mathematik VZ 31.00 Mathematik: Allgemeines VZ AR 149 |
language |
English |
source |
Enthalten in Advances in applied mathematics 149 volume:149 |
sourceStr |
Enthalten in Advances in applied mathematics 149 volume:149 |
format_phy_str_mv |
Article |
bklname |
Angewandte Mathematik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Advances in applied mathematics |
authorswithroles_txt_mv |
Niese, Elizabeth @@aut@@ Sundaram, Sheila @@aut@@ van Willigenburg, Stephanie @@aut@@ Vega, Julianne @@aut@@ Wang, Shiyun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
25378011X |
dewey-sort |
3510 |
id |
ELV010276068 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010276068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230610073422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aam.2023.102540</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010276068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8858(23)00058-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3596-5630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Row-strict dual immaculate functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creation operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual immaculate function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hook Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pieri rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasisymmetric function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tableau combinatorics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sundaram, Sheila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vega, Julianne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shiyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in applied mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)25378011X</subfield><subfield code="w">(DE-600)1460437-1</subfield><subfield code="w">(DE-576)104082003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
author |
Niese, Elizabeth |
spellingShingle |
Niese, Elizabeth ddc 510 bkl 31.80 bkl 31.00 misc Composition misc Creation operator misc Dual immaculate function misc Hook Schur function misc Hopf algebra misc Pieri rule misc Quasisymmetric function misc Schur function misc Skew Schur function misc Tableau combinatorics Row-strict dual immaculate functions |
authorStr |
Niese, Elizabeth |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)25378011X |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 VZ 31.80 bkl 31.00 bkl Row-strict dual immaculate functions Composition Creation operator Dual immaculate function Hook Schur function Hopf algebra Pieri rule Quasisymmetric function Schur function Skew Schur function Tableau combinatorics |
topic |
ddc 510 bkl 31.80 bkl 31.00 misc Composition misc Creation operator misc Dual immaculate function misc Hook Schur function misc Hopf algebra misc Pieri rule misc Quasisymmetric function misc Schur function misc Skew Schur function misc Tableau combinatorics |
topic_unstemmed |
ddc 510 bkl 31.80 bkl 31.00 misc Composition misc Creation operator misc Dual immaculate function misc Hook Schur function misc Hopf algebra misc Pieri rule misc Quasisymmetric function misc Schur function misc Skew Schur function misc Tableau combinatorics |
topic_browse |
ddc 510 bkl 31.80 bkl 31.00 misc Composition misc Creation operator misc Dual immaculate function misc Hook Schur function misc Hopf algebra misc Pieri rule misc Quasisymmetric function misc Schur function misc Skew Schur function misc Tableau combinatorics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in applied mathematics |
hierarchy_parent_id |
25378011X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Advances in applied mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)25378011X (DE-600)1460437-1 (DE-576)104082003 |
title |
Row-strict dual immaculate functions |
ctrlnum |
(DE-627)ELV010276068 (ELSEVIER)S0196-8858(23)00058-1 |
title_full |
Row-strict dual immaculate functions |
author_sort |
Niese, Elizabeth |
journal |
Advances in applied mathematics |
journalStr |
Advances in applied mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Niese, Elizabeth Sundaram, Sheila van Willigenburg, Stephanie Vega, Julianne Wang, Shiyun |
container_volume |
149 |
class |
510 VZ 31.80 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Niese, Elizabeth |
doi_str_mv |
10.1016/j.aam.2023.102540 |
normlink |
(ORCID)0000-0003-3596-5630 |
normlink_prefix_str_mv |
(orcid)0000-0003-3596-5630 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
row-strict dual immaculate functions |
title_auth |
Row-strict dual immaculate functions |
abstract |
We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. |
abstractGer |
We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. |
abstract_unstemmed |
We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2056 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Row-strict dual immaculate functions |
remote_bool |
true |
author2 |
Sundaram, Sheila van Willigenburg, Stephanie Vega, Julianne Wang, Shiyun |
author2Str |
Sundaram, Sheila van Willigenburg, Stephanie Vega, Julianne Wang, Shiyun |
ppnlink |
25378011X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aam.2023.102540 |
up_date |
2024-07-06T17:25:54.751Z |
_version_ |
1803851404152930304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010276068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230610073422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aam.2023.102540</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010276068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8858(23)00058-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3596-5630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Row-strict dual immaculate functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We define a new basis of quasisymmetric functions, the row-strict dual immaculate functions, as the generating function of a particular set of tableaux. We show that this definition gives a function that can also be obtained by applying the involution ψ to the dual immaculate functions of Berg, Bergeron, Saliola, Serrano, and Zabrocki (2014), and we establish numerous combinatorial properties for our functions. We give an equivalent formulation of our functions via Bernstein-like operators, in a similar fashion to Berg et al. (2014). We conclude the paper by defining skew dual immaculate functions and hook dual immaculate functions, and establishing combinatorial properties for them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creation operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual immaculate function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hook Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pieri rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasisymmetric function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tableau combinatorics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sundaram, Sheila</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vega, Julianne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shiyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in applied mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)25378011X</subfield><subfield code="w">(DE-600)1460437-1</subfield><subfield code="w">(DE-576)104082003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
score |
7.401457 |