Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms
Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was develo...
Ausführliche Beschreibung
Autor*in: |
Meng, Linlin [verfasserIn] Xu, Weiying [verfasserIn] Sang, Guoqing [verfasserIn] Peng, Yiyuan [verfasserIn] Xu, Hui [verfasserIn] Wei, Dong [verfasserIn] Zhao, Yanxia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Separation and purification technology - Amsterdam [u.a.] : Elsevier Science, 1997, 320 |
---|---|
Übergeordnetes Werk: |
volume:320 |
DOI / URN: |
10.1016/j.seppur.2023.124152 |
---|
Katalog-ID: |
ELV010288384 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010288384 | ||
003 | DE-627 | ||
005 | 20230927135907.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230610s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.seppur.2023.124152 |2 doi | |
035 | |a (DE-627)ELV010288384 | ||
035 | |a (ELSEVIER)S1383-5866(23)01060-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 58.11 |2 bkl | ||
084 | |a 58.13 |2 bkl | ||
100 | 1 | |a Meng, Linlin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. | ||
650 | 4 | |a Metal-based coagulant | |
650 | 4 | |a Peroxymonosulfate | |
650 | 4 | |a Coagulation/oxidation | |
650 | 4 | |a Ciprofloxacin | |
650 | 4 | |a Mutual enhancement | |
700 | 1 | |a Xu, Weiying |e verfasserin |4 aut | |
700 | 1 | |a Sang, Guoqing |e verfasserin |4 aut | |
700 | 1 | |a Peng, Yiyuan |e verfasserin |4 aut | |
700 | 1 | |a Xu, Hui |e verfasserin |4 aut | |
700 | 1 | |a Wei, Dong |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Yanxia |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Separation and purification technology |d Amsterdam [u.a.] : Elsevier Science, 1997 |g 320 |h Online-Ressource |w (DE-627)320620123 |w (DE-600)2022535-0 |w (DE-576)259485349 |7 nnns |
773 | 1 | 8 | |g volume:320 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.11 |j Mechanische Verfahrenstechnik |q VZ |
936 | b | k | |a 58.13 |j Thermische Verfahrenstechnik |q VZ |
951 | |a AR | ||
952 | |d 320 |
author_variant |
l m lm w x wx g s gs y p yp h x hx d w dw y z yz |
---|---|
matchkey_str |
menglinlinxuweiyingsangguoqingpengyiyuan:2023----:uulnacmnomtloglnadeoyoouftfrirfoairmvna |
hierarchy_sort_str |
2023 |
bklnumber |
58.11 58.13 |
publishDate |
2023 |
allfields |
10.1016/j.seppur.2023.124152 doi (DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 DE-627 ger DE-627 rda eng 540 VZ 58.11 bkl 58.13 bkl Meng, Linlin verfasserin aut Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement Xu, Weiying verfasserin aut Sang, Guoqing verfasserin aut Peng, Yiyuan verfasserin aut Xu, Hui verfasserin aut Wei, Dong verfasserin aut Zhao, Yanxia verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 320 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:320 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ 58.13 Thermische Verfahrenstechnik VZ AR 320 |
spelling |
10.1016/j.seppur.2023.124152 doi (DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 DE-627 ger DE-627 rda eng 540 VZ 58.11 bkl 58.13 bkl Meng, Linlin verfasserin aut Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement Xu, Weiying verfasserin aut Sang, Guoqing verfasserin aut Peng, Yiyuan verfasserin aut Xu, Hui verfasserin aut Wei, Dong verfasserin aut Zhao, Yanxia verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 320 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:320 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ 58.13 Thermische Verfahrenstechnik VZ AR 320 |
allfields_unstemmed |
10.1016/j.seppur.2023.124152 doi (DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 DE-627 ger DE-627 rda eng 540 VZ 58.11 bkl 58.13 bkl Meng, Linlin verfasserin aut Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement Xu, Weiying verfasserin aut Sang, Guoqing verfasserin aut Peng, Yiyuan verfasserin aut Xu, Hui verfasserin aut Wei, Dong verfasserin aut Zhao, Yanxia verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 320 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:320 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ 58.13 Thermische Verfahrenstechnik VZ AR 320 |
allfieldsGer |
10.1016/j.seppur.2023.124152 doi (DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 DE-627 ger DE-627 rda eng 540 VZ 58.11 bkl 58.13 bkl Meng, Linlin verfasserin aut Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement Xu, Weiying verfasserin aut Sang, Guoqing verfasserin aut Peng, Yiyuan verfasserin aut Xu, Hui verfasserin aut Wei, Dong verfasserin aut Zhao, Yanxia verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 320 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:320 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ 58.13 Thermische Verfahrenstechnik VZ AR 320 |
allfieldsSound |
10.1016/j.seppur.2023.124152 doi (DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 DE-627 ger DE-627 rda eng 540 VZ 58.11 bkl 58.13 bkl Meng, Linlin verfasserin aut Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement Xu, Weiying verfasserin aut Sang, Guoqing verfasserin aut Peng, Yiyuan verfasserin aut Xu, Hui verfasserin aut Wei, Dong verfasserin aut Zhao, Yanxia verfasserin aut Enthalten in Separation and purification technology Amsterdam [u.a.] : Elsevier Science, 1997 320 Online-Ressource (DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 nnns volume:320 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.11 Mechanische Verfahrenstechnik VZ 58.13 Thermische Verfahrenstechnik VZ AR 320 |
language |
English |
source |
Enthalten in Separation and purification technology 320 volume:320 |
sourceStr |
Enthalten in Separation and purification technology 320 volume:320 |
format_phy_str_mv |
Article |
bklname |
Mechanische Verfahrenstechnik Thermische Verfahrenstechnik |
institution |
findex.gbv.de |
topic_facet |
Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Separation and purification technology |
authorswithroles_txt_mv |
Meng, Linlin @@aut@@ Xu, Weiying @@aut@@ Sang, Guoqing @@aut@@ Peng, Yiyuan @@aut@@ Xu, Hui @@aut@@ Wei, Dong @@aut@@ Zhao, Yanxia @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320620123 |
dewey-sort |
3540 |
id |
ELV010288384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010288384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927135907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.seppur.2023.124152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010288384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1383-5866(23)01060-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Linlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-based coagulant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxymonosulfate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coagulation/oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ciprofloxacin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutual enhancement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Weiying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sang, Guoqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Yiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation and purification technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">320</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320620123</subfield><subfield code="w">(DE-600)2022535-0</subfield><subfield code="w">(DE-576)259485349</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13</subfield><subfield code="j">Thermische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">320</subfield></datafield></record></collection>
|
author |
Meng, Linlin |
spellingShingle |
Meng, Linlin ddc 540 bkl 58.11 bkl 58.13 misc Metal-based coagulant misc Peroxymonosulfate misc Coagulation/oxidation misc Ciprofloxacin misc Mutual enhancement Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
authorStr |
Meng, Linlin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320620123 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 58.11 bkl 58.13 bkl Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms Metal-based coagulant Peroxymonosulfate Coagulation/oxidation Ciprofloxacin Mutual enhancement |
topic |
ddc 540 bkl 58.11 bkl 58.13 misc Metal-based coagulant misc Peroxymonosulfate misc Coagulation/oxidation misc Ciprofloxacin misc Mutual enhancement |
topic_unstemmed |
ddc 540 bkl 58.11 bkl 58.13 misc Metal-based coagulant misc Peroxymonosulfate misc Coagulation/oxidation misc Ciprofloxacin misc Mutual enhancement |
topic_browse |
ddc 540 bkl 58.11 bkl 58.13 misc Metal-based coagulant misc Peroxymonosulfate misc Coagulation/oxidation misc Ciprofloxacin misc Mutual enhancement |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Separation and purification technology |
hierarchy_parent_id |
320620123 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Separation and purification technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320620123 (DE-600)2022535-0 (DE-576)259485349 |
title |
Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
ctrlnum |
(DE-627)ELV010288384 (ELSEVIER)S1383-5866(23)01060-2 |
title_full |
Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
author_sort |
Meng, Linlin |
journal |
Separation and purification technology |
journalStr |
Separation and purification technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Meng, Linlin Xu, Weiying Sang, Guoqing Peng, Yiyuan Xu, Hui Wei, Dong Zhao, Yanxia |
container_volume |
320 |
class |
540 VZ 58.11 bkl 58.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Meng, Linlin |
doi_str_mv |
10.1016/j.seppur.2023.124152 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
title_auth |
Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
abstract |
Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. |
abstractGer |
Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. |
abstract_unstemmed |
Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms |
remote_bool |
true |
author2 |
Xu, Weiying Sang, Guoqing Peng, Yiyuan Xu, Hui Wei, Dong Zhao, Yanxia |
author2Str |
Xu, Weiying Sang, Guoqing Peng, Yiyuan Xu, Hui Wei, Dong Zhao, Yanxia |
ppnlink |
320620123 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.seppur.2023.124152 |
up_date |
2024-07-06T17:28:22.694Z |
_version_ |
1803851559283458048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010288384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927135907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230610s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.seppur.2023.124152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010288384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1383-5866(23)01060-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Linlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutual enhancement of metal coagulant and peroxymonosulfate for ciprofloxacin removing and the multiple-mode mechanisms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal coagulants, which are widely employed in water and wastewater treatments, have been recently found to have catalyzation effect on oxidation, while chemical oxidation, in turn, could possibly impose impacts on coagulation process. In this study, a hybrid coagulation/oxidation process was developed using four metal-based coagulants, i.e., aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), titanic sulfate (Ti(SO4)2), zirconium oxychloride (ZrOCl2) and peroxymonosulfate (PMS) as the oxidant, for removing ciprofloxacin (CIP), which is a representative emerging organic contaminant (EOC) with small molecular weight (MW). The results showed PMS (0.2 mM) improved the CIP removals by Al2(SO4)3 and FeCl3 from 13% and 21% respectively to around 92% at the coagulant dose of 0.02 mM, and for Ti(SO4)2 and ZrOCl2, the CIP removal was increased from about 21% to 70∼75%, which was also more efficient than separate PMS oxidation (around 42%). The results of zeta potential, dynamic floc growth and residual coagulants demonstrated PMS led to the destabilization of coagulation suspensions, where lag time for floc formation was largely shortened and also, residual metal coagulants in terms of dissolved and colloids/particles were decreased. PMS alleviated the negative effect of crystallization on colloids and clots aggregation via reducing the quantity and crystallinity of nanocrystal according to the high-resolution transmission electron microscopy (HR-TEM) analysis, which facilitated the flocculation. The results of radicals scavenging experiments verified metal coagulants could activate PMS in turn, where •OH played a dominant role in CIP degradation. While, the four kinds of coagulants behaved significantly different when combined with PMS. Due to the different hydrolysis and polymerization properties, coupling PMS with aluminum/iron salt were more efficient than with titanium/zirconium. Nevertheless, the synthetic effect was suppressed as the coagulant dose increased to 0.1 mM and above, where restabilization occurred. Therefore, coagulation played a major role in coagulant/PMS process, which could provide a promising technology for CIP removals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-based coagulant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxymonosulfate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coagulation/oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ciprofloxacin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutual enhancement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Weiying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sang, Guoqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Yiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation and purification technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">320</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320620123</subfield><subfield code="w">(DE-600)2022535-0</subfield><subfield code="w">(DE-576)259485349</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13</subfield><subfield code="j">Thermische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">320</subfield></datafield></record></collection>
|
score |
7.4026995 |