Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle
The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and...
Ausführliche Beschreibung
Autor*in: |
Bu, Shujuan [verfasserIn] Yang, Xinle [verfasserIn] Li, Weikang [verfasserIn] Su, Chang [verfasserIn] Wang, Xin [verfasserIn] Liu, Xunan [verfasserIn] Yu, Ning [verfasserIn] Wang, Guanyu [verfasserIn] Tang, Jupeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat |
---|
Übergeordnetes Werk: |
Enthalten in: International communications in heat and mass transfer - Amsterdam [u.a.] : Elsevier Science, 1983, 145 |
---|---|
Übergeordnetes Werk: |
volume:145 |
DOI / URN: |
10.1016/j.icheatmasstransfer.2023.106808 |
---|
Katalog-ID: |
ELV010330259 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010330259 | ||
003 | DE-627 | ||
005 | 20230611073331.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230611s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.icheatmasstransfer.2023.106808 |2 doi | |
035 | |a (DE-627)ELV010330259 | ||
035 | |a (ELSEVIER)S0735-1933(23)00197-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Bu, Shujuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. | ||
650 | 4 | |a Shift-temperature of heating fluid for zeotropic mixtures | |
650 | 4 | |a Entropy difference ratio of latent heat | |
650 | 4 | |a Position of pinch point in the evaporator | |
650 | 4 | |a Dry | |
650 | 4 | |a Wet | |
650 | 4 | |a And isentropic fluids | |
650 | 4 | |a Matching between zeotropic mixtures and heating fluid | |
700 | 1 | |a Yang, Xinle |e verfasserin |4 aut | |
700 | 1 | |a Li, Weikang |e verfasserin |4 aut | |
700 | 1 | |a Su, Chang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xin |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xunan |e verfasserin |4 aut | |
700 | 1 | |a Yu, Ning |e verfasserin |4 aut | |
700 | 1 | |a Wang, Guanyu |e verfasserin |4 aut | |
700 | 1 | |a Tang, Jupeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International communications in heat and mass transfer |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 145 |h Online-Ressource |w (DE-627)320604373 |w (DE-600)2020560-0 |w (DE-576)096806710 |7 nnns |
773 | 1 | 8 | |g volume:145 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 145 |
author_variant |
s b sb x y xy w l wl c s cs x w xw x l xl n y ny g w gw j t jt |
---|---|
matchkey_str |
bushujuanyangxinleliweikangsuchangwangxi:2023----:tdadplctootehftmeauefetnfudozorpci |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.icheatmasstransfer.2023.106808 doi (DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Bu, Shujuan verfasserin aut Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid Yang, Xinle verfasserin aut Li, Weikang verfasserin aut Su, Chang verfasserin aut Wang, Xin verfasserin aut Liu, Xunan verfasserin aut Yu, Ning verfasserin aut Wang, Guanyu verfasserin aut Tang, Jupeng verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 145 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 145 |
spelling |
10.1016/j.icheatmasstransfer.2023.106808 doi (DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Bu, Shujuan verfasserin aut Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid Yang, Xinle verfasserin aut Li, Weikang verfasserin aut Su, Chang verfasserin aut Wang, Xin verfasserin aut Liu, Xunan verfasserin aut Yu, Ning verfasserin aut Wang, Guanyu verfasserin aut Tang, Jupeng verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 145 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 145 |
allfields_unstemmed |
10.1016/j.icheatmasstransfer.2023.106808 doi (DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Bu, Shujuan verfasserin aut Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid Yang, Xinle verfasserin aut Li, Weikang verfasserin aut Su, Chang verfasserin aut Wang, Xin verfasserin aut Liu, Xunan verfasserin aut Yu, Ning verfasserin aut Wang, Guanyu verfasserin aut Tang, Jupeng verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 145 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 145 |
allfieldsGer |
10.1016/j.icheatmasstransfer.2023.106808 doi (DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Bu, Shujuan verfasserin aut Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid Yang, Xinle verfasserin aut Li, Weikang verfasserin aut Su, Chang verfasserin aut Wang, Xin verfasserin aut Liu, Xunan verfasserin aut Yu, Ning verfasserin aut Wang, Guanyu verfasserin aut Tang, Jupeng verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 145 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 145 |
allfieldsSound |
10.1016/j.icheatmasstransfer.2023.106808 doi (DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Bu, Shujuan verfasserin aut Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid Yang, Xinle verfasserin aut Li, Weikang verfasserin aut Su, Chang verfasserin aut Wang, Xin verfasserin aut Liu, Xunan verfasserin aut Yu, Ning verfasserin aut Wang, Guanyu verfasserin aut Tang, Jupeng verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 145 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 145 |
language |
English |
source |
Enthalten in International communications in heat and mass transfer 145 volume:145 |
sourceStr |
Enthalten in International communications in heat and mass transfer 145 volume:145 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International communications in heat and mass transfer |
authorswithroles_txt_mv |
Bu, Shujuan @@aut@@ Yang, Xinle @@aut@@ Li, Weikang @@aut@@ Su, Chang @@aut@@ Wang, Xin @@aut@@ Liu, Xunan @@aut@@ Yu, Ning @@aut@@ Wang, Guanyu @@aut@@ Tang, Jupeng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320604373 |
dewey-sort |
3620 |
id |
ELV010330259 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010330259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230611073331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230611s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.106808</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010330259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00197-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bu, Shujuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift-temperature of heating fluid for zeotropic mixtures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy difference ratio of latent heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position of pinch point in the evaporator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">And isentropic fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matching between zeotropic mixtures and heating fluid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xinle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xunan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jupeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">145</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield></datafield></record></collection>
|
author |
Bu, Shujuan |
spellingShingle |
Bu, Shujuan ddc 620 bkl 50.38 misc Shift-temperature of heating fluid for zeotropic mixtures misc Entropy difference ratio of latent heat misc Position of pinch point in the evaporator misc Dry misc Wet misc And isentropic fluids misc Matching between zeotropic mixtures and heating fluid Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
authorStr |
Bu, Shujuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604373 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.38 bkl Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle Shift-temperature of heating fluid for zeotropic mixtures Entropy difference ratio of latent heat Position of pinch point in the evaporator Dry Wet And isentropic fluids Matching between zeotropic mixtures and heating fluid |
topic |
ddc 620 bkl 50.38 misc Shift-temperature of heating fluid for zeotropic mixtures misc Entropy difference ratio of latent heat misc Position of pinch point in the evaporator misc Dry misc Wet misc And isentropic fluids misc Matching between zeotropic mixtures and heating fluid |
topic_unstemmed |
ddc 620 bkl 50.38 misc Shift-temperature of heating fluid for zeotropic mixtures misc Entropy difference ratio of latent heat misc Position of pinch point in the evaporator misc Dry misc Wet misc And isentropic fluids misc Matching between zeotropic mixtures and heating fluid |
topic_browse |
ddc 620 bkl 50.38 misc Shift-temperature of heating fluid for zeotropic mixtures misc Entropy difference ratio of latent heat misc Position of pinch point in the evaporator misc Dry misc Wet misc And isentropic fluids misc Matching between zeotropic mixtures and heating fluid |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International communications in heat and mass transfer |
hierarchy_parent_id |
320604373 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International communications in heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 |
title |
Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
ctrlnum |
(DE-627)ELV010330259 (ELSEVIER)S0735-1933(23)00197-5 |
title_full |
Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
author_sort |
Bu, Shujuan |
journal |
International communications in heat and mass transfer |
journalStr |
International communications in heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Bu, Shujuan Yang, Xinle Li, Weikang Su, Chang Wang, Xin Liu, Xunan Yu, Ning Wang, Guanyu Tang, Jupeng |
container_volume |
145 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bu, Shujuan |
doi_str_mv |
10.1016/j.icheatmasstransfer.2023.106808 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic rankine cycle |
title_auth |
Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
abstract |
The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. |
abstractGer |
The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. |
abstract_unstemmed |
The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle |
remote_bool |
true |
author2 |
Yang, Xinle Li, Weikang Su, Chang Wang, Xin Liu, Xunan Yu, Ning Wang, Guanyu Tang, Jupeng |
author2Str |
Yang, Xinle Li, Weikang Su, Chang Wang, Xin Liu, Xunan Yu, Ning Wang, Guanyu Tang, Jupeng |
ppnlink |
320604373 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.icheatmasstransfer.2023.106808 |
up_date |
2024-07-06T17:36:48.277Z |
_version_ |
1803852089424609280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010330259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230611073331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230611s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.106808</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010330259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00197-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bu, Shujuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study and application of the shift-temperature of heating fluid for zeotropic mixtures in organic Rankine cycle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theoretical formulations of the shift-temperature of the heating fluid for zeotropic mixtures (T shift) were derived when the pinch point was located at the evaporating bubble point and the working fluid inlet of the evaporator, respectively, which were applicable to dry, wet, and isentropic zeotropic mixtures. T shift was corrected by the impact factor analysis and calculated exactly using the Dragonfly algorithm. The optimal zeotropic mixture was matched by comparing the heat source temperature(T g, in) and T shift. The results indicate that T shift is a property of every zeotropic mixture and is related to the critical temperature, the evaporation bubble point temperature, and the condensation dew point temperature. When the pinch point is at the evaporation bubble point, the zeotropic mixture with T shift lower than T g, in is selected and then combined with the thermal efficiency for a comprehensive evaluation. When the pinch point is at the working fluid inlet of the evaporator, T shift is also affected by the pinch point temperature difference and the temperature glide of the condensation process, T shift is significantly lower than T g, in, all zeotropic mixtures are applied. Among the matched zeotropic mixtures, R227ea/R22 with the lowest T shift has the best thermal performance in the ORC system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift-temperature of heating fluid for zeotropic mixtures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy difference ratio of latent heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position of pinch point in the evaporator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">And isentropic fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matching between zeotropic mixtures and heating fluid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xinle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xunan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jupeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">145</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield></datafield></record></collection>
|
score |
7.40129 |