A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling
Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and effici...
Ausführliche Beschreibung
Autor*in: |
Zhang, Wanqi [verfasserIn] Yang, Shaobing [verfasserIn] Zhang, Junting [verfasserIn] Ye, Jingjing [verfasserIn] Wu, Mingli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of electrical power & energy systems - Amsterdam [u.a.] : Elsevier Science, 1979, 152 |
---|---|
Übergeordnetes Werk: |
volume:152 |
DOI / URN: |
10.1016/j.ijepes.2023.109252 |
---|
Katalog-ID: |
ELV010384537 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010384537 | ||
003 | DE-627 | ||
005 | 20231009073042.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230613s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijepes.2023.109252 |2 doi | |
035 | |a (DE-627)ELV010384537 | ||
035 | |a (ELSEVIER)S0142-0615(23)00309-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.30 |2 bkl | ||
100 | 1 | |a Zhang, Wanqi |e verfasserin |4 aut | |
245 | 1 | 0 | |a A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. | ||
650 | 4 | |a Chain network | |
650 | 4 | |a Decoupling | |
650 | 4 | |a Power flow | |
650 | 4 | |a Traction power supply system | |
650 | 4 | |a Traction substation | |
700 | 1 | |a Yang, Shaobing |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Junting |e verfasserin |4 aut | |
700 | 1 | |a Ye, Jingjing |e verfasserin |4 aut | |
700 | 1 | |a Wu, Mingli |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of electrical power & energy systems |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 152 |h Online-Ressource |w (DE-627)320411907 |w (DE-600)2001425-9 |w (DE-576)259271101 |x 0142-0615 |7 nnns |
773 | 1 | 8 | |g volume:152 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.30 |j Elektrische Energietechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 152 |
author_variant |
w z wz s y sy j z jz j y jy m w mw |
---|---|
matchkey_str |
article:01420615:2023----::tohspwrlwloihotatopwrupyytmaeotatosb |
hierarchy_sort_str |
2023 |
bklnumber |
53.30 |
publishDate |
2023 |
allfields |
10.1016/j.ijepes.2023.109252 doi (DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Wanqi verfasserin aut A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. Chain network Decoupling Power flow Traction power supply system Traction substation Yang, Shaobing verfasserin aut Zhang, Junting verfasserin aut Ye, Jingjing verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 152 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:152 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 152 |
spelling |
10.1016/j.ijepes.2023.109252 doi (DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Wanqi verfasserin aut A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. Chain network Decoupling Power flow Traction power supply system Traction substation Yang, Shaobing verfasserin aut Zhang, Junting verfasserin aut Ye, Jingjing verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 152 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:152 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 152 |
allfields_unstemmed |
10.1016/j.ijepes.2023.109252 doi (DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Wanqi verfasserin aut A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. Chain network Decoupling Power flow Traction power supply system Traction substation Yang, Shaobing verfasserin aut Zhang, Junting verfasserin aut Ye, Jingjing verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 152 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:152 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 152 |
allfieldsGer |
10.1016/j.ijepes.2023.109252 doi (DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Wanqi verfasserin aut A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. Chain network Decoupling Power flow Traction power supply system Traction substation Yang, Shaobing verfasserin aut Zhang, Junting verfasserin aut Ye, Jingjing verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 152 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:152 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 152 |
allfieldsSound |
10.1016/j.ijepes.2023.109252 doi (DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 DE-627 ger DE-627 rda eng 620 VZ 53.30 bkl Zhang, Wanqi verfasserin aut A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. Chain network Decoupling Power flow Traction power supply system Traction substation Yang, Shaobing verfasserin aut Zhang, Junting verfasserin aut Ye, Jingjing verfasserin aut Wu, Mingli verfasserin aut Enthalten in International journal of electrical power & energy systems Amsterdam [u.a.] : Elsevier Science, 1979 152 Online-Ressource (DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 0142-0615 nnns volume:152 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.30 Elektrische Energietechnik: Allgemeines VZ AR 152 |
language |
English |
source |
Enthalten in International journal of electrical power & energy systems 152 volume:152 |
sourceStr |
Enthalten in International journal of electrical power & energy systems 152 volume:152 |
format_phy_str_mv |
Article |
bklname |
Elektrische Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Chain network Decoupling Power flow Traction power supply system Traction substation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of electrical power & energy systems |
authorswithroles_txt_mv |
Zhang, Wanqi @@aut@@ Yang, Shaobing @@aut@@ Zhang, Junting @@aut@@ Ye, Jingjing @@aut@@ Wu, Mingli @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320411907 |
dewey-sort |
3620 |
id |
ELV010384537 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010384537</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231009073042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijepes.2023.109252</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010384537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-0615(23)00309-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wanqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chain network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction power supply system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction substation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Mingli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electrical power & energy systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">152</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411907</subfield><subfield code="w">(DE-600)2001425-9</subfield><subfield code="w">(DE-576)259271101</subfield><subfield code="x">0142-0615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="j">Elektrische Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">152</subfield></datafield></record></collection>
|
author |
Zhang, Wanqi |
spellingShingle |
Zhang, Wanqi ddc 620 bkl 53.30 misc Chain network misc Decoupling misc Power flow misc Traction power supply system misc Traction substation A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
authorStr |
Zhang, Wanqi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320411907 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0142-0615 |
topic_title |
620 VZ 53.30 bkl A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling Chain network Decoupling Power flow Traction power supply system Traction substation |
topic |
ddc 620 bkl 53.30 misc Chain network misc Decoupling misc Power flow misc Traction power supply system misc Traction substation |
topic_unstemmed |
ddc 620 bkl 53.30 misc Chain network misc Decoupling misc Power flow misc Traction power supply system misc Traction substation |
topic_browse |
ddc 620 bkl 53.30 misc Chain network misc Decoupling misc Power flow misc Traction power supply system misc Traction substation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of electrical power & energy systems |
hierarchy_parent_id |
320411907 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of electrical power & energy systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320411907 (DE-600)2001425-9 (DE-576)259271101 |
title |
A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
ctrlnum |
(DE-627)ELV010384537 (ELSEVIER)S0142-0615(23)00309-5 |
title_full |
A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
author_sort |
Zhang, Wanqi |
journal |
International journal of electrical power & energy systems |
journalStr |
International journal of electrical power & energy systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Wanqi Yang, Shaobing Zhang, Junting Ye, Jingjing Wu, Mingli |
container_volume |
152 |
class |
620 VZ 53.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Wanqi |
doi_str_mv |
10.1016/j.ijepes.2023.109252 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
a two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
title_auth |
A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
abstract |
Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. |
abstractGer |
Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. |
abstract_unstemmed |
Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling |
remote_bool |
true |
author2 |
Yang, Shaobing Zhang, Junting Ye, Jingjing Wu, Mingli |
author2Str |
Yang, Shaobing Zhang, Junting Ye, Jingjing Wu, Mingli |
ppnlink |
320411907 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijepes.2023.109252 |
up_date |
2024-07-06T17:48:01.632Z |
_version_ |
1803852795488501760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010384537</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231009073042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijepes.2023.109252</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010384537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-0615(23)00309-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wanqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-phase power flow algorithm of traction power supply system based on traction substation-network decoupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Power flow analysis of traction power supply system (TPSS) is an effective approach to assess supply capacity and power quality, serving the whole process of system design, operation and optimization. The coupling effect between adjacent power supply arms poses challenges for the accurate and efficient solution, especially with the penetration of power converters and energy equipment. This paper proposes a two-phase power flow decoupling algorithm. TPSS is divided into traction substation and two decoupled power supply arms by introducing current ratio coefficients and unit matrices. Specifically, the equivalent voltage source model of traction substation and the modified chain network model of arms are solved by using forward–backward sweep method and LU decomposition method, respectively. Then the TPSS power flow can be obtained by alternative iteration of two solving phases. Simulations verify the proposed algorithm exhibits great compatibility at various operation modes. Additionally, the power supply capacity is mapped to the algorithm convergence. Compared to conventional methods, the algorithm achieves superior performance on accuracy and efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chain network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction power supply system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traction substation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Mingli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of electrical power & energy systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">152</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411907</subfield><subfield code="w">(DE-600)2001425-9</subfield><subfield code="w">(DE-576)259271101</subfield><subfield code="x">0142-0615</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="j">Elektrische Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">152</subfield></datafield></record></collection>
|
score |
7.3990602 |