Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification
Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) re...
Ausführliche Beschreibung
Autor*in: |
Umenweke, Great C. [verfasserIn] Pace, Robert B. [verfasserIn] Santillan-Jimenez, Eduardo [verfasserIn] Okolie, Jude A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 452 |
---|---|
Übergeordnetes Werk: |
volume:452 |
DOI / URN: |
10.1016/j.cej.2022.139215 |
---|
Katalog-ID: |
ELV010384960 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010384960 | ||
003 | DE-627 | ||
005 | 20230613073348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230613s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2022.139215 |2 doi | |
035 | |a (DE-627)ELV010384960 | ||
035 | |a (ELSEVIER)S1385-8947(22)04694-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Umenweke, Great C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. | ||
650 | 4 | |a Sustainable Aviation Fuel | |
650 | 4 | |a Techno-economic analysis | |
650 | 4 | |a Life-cycle assessment | |
650 | 4 | |a Decarboxylation | |
650 | 4 | |a Decarbonylation | |
650 | 4 | |a Hydrothermal gasification | |
700 | 1 | |a Pace, Robert B. |e verfasserin |4 aut | |
700 | 1 | |a Santillan-Jimenez, Eduardo |e verfasserin |4 aut | |
700 | 1 | |a Okolie, Jude A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 452 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:452 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 452 |
author_variant |
g c u gc gcu r b p rb rbp e s j esj j a o ja jao |
---|---|
matchkey_str |
article:18733212:2022----::ehocnmcnlfccenlssfutialaitofepoutovanertdaayidoy |
hierarchy_sort_str |
2022 |
bklnumber |
58.10 |
publishDate |
2022 |
allfields |
10.1016/j.cej.2022.139215 doi (DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Umenweke, Great C. verfasserin aut Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification Pace, Robert B. verfasserin aut Santillan-Jimenez, Eduardo verfasserin aut Okolie, Jude A. verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 452 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines VZ AR 452 |
spelling |
10.1016/j.cej.2022.139215 doi (DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Umenweke, Great C. verfasserin aut Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification Pace, Robert B. verfasserin aut Santillan-Jimenez, Eduardo verfasserin aut Okolie, Jude A. verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 452 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines VZ AR 452 |
allfields_unstemmed |
10.1016/j.cej.2022.139215 doi (DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Umenweke, Great C. verfasserin aut Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification Pace, Robert B. verfasserin aut Santillan-Jimenez, Eduardo verfasserin aut Okolie, Jude A. verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 452 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines VZ AR 452 |
allfieldsGer |
10.1016/j.cej.2022.139215 doi (DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Umenweke, Great C. verfasserin aut Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification Pace, Robert B. verfasserin aut Santillan-Jimenez, Eduardo verfasserin aut Okolie, Jude A. verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 452 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines VZ AR 452 |
allfieldsSound |
10.1016/j.cej.2022.139215 doi (DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Umenweke, Great C. verfasserin aut Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification Pace, Robert B. verfasserin aut Santillan-Jimenez, Eduardo verfasserin aut Okolie, Jude A. verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 452 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:452 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines VZ AR 452 |
language |
English |
source |
Enthalten in The chemical engineering journal 452 volume:452 |
sourceStr |
Enthalten in The chemical engineering journal 452 volume:452 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Umenweke, Great C. @@aut@@ Pace, Robert B. @@aut@@ Santillan-Jimenez, Eduardo @@aut@@ Okolie, Jude A. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV010384960 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010384960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230613073348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.139215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010384960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)04694-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Umenweke, Great C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable Aviation Fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Techno-economic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life-cycle assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decarboxylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decarbonylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal gasification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pace, Robert B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santillan-Jimenez, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okolie, Jude A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">452</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:452</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">452</subfield></datafield></record></collection>
|
author |
Umenweke, Great C. |
spellingShingle |
Umenweke, Great C. ddc 660 bkl 58.10 misc Sustainable Aviation Fuel misc Techno-economic analysis misc Life-cycle assessment misc Decarboxylation misc Decarbonylation misc Hydrothermal gasification Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
authorStr |
Umenweke, Great C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification Sustainable Aviation Fuel Techno-economic analysis Life-cycle assessment Decarboxylation Decarbonylation Hydrothermal gasification |
topic |
ddc 660 bkl 58.10 misc Sustainable Aviation Fuel misc Techno-economic analysis misc Life-cycle assessment misc Decarboxylation misc Decarbonylation misc Hydrothermal gasification |
topic_unstemmed |
ddc 660 bkl 58.10 misc Sustainable Aviation Fuel misc Techno-economic analysis misc Life-cycle assessment misc Decarboxylation misc Decarbonylation misc Hydrothermal gasification |
topic_browse |
ddc 660 bkl 58.10 misc Sustainable Aviation Fuel misc Techno-economic analysis misc Life-cycle assessment misc Decarboxylation misc Decarbonylation misc Hydrothermal gasification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
ctrlnum |
(DE-627)ELV010384960 (ELSEVIER)S1385-8947(22)04694-0 |
title_full |
Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
author_sort |
Umenweke, Great C. |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Umenweke, Great C. Pace, Robert B. Santillan-Jimenez, Eduardo Okolie, Jude A. |
container_volume |
452 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Umenweke, Great C. |
doi_str_mv |
10.1016/j.cej.2022.139215 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
title_auth |
Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
abstract |
Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. |
abstractGer |
Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. |
abstract_unstemmed |
Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification |
remote_bool |
true |
author2 |
Pace, Robert B. Santillan-Jimenez, Eduardo Okolie, Jude A. |
author2Str |
Pace, Robert B. Santillan-Jimenez, Eduardo Okolie, Jude A. |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2022.139215 |
up_date |
2024-07-06T17:48:07.147Z |
_version_ |
1803852801271398400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010384960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230613073348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.139215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010384960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)04694-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Umenweke, Great C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several technologies have been developed to produce sustainable aviation fuel (SAF), the hydroprocessing of esters and fatty acids (HEFA) representing one of the most mature pathways. Although HEFA has been widely adopted by industry, this pathway is mainly reliant on the hydrodeoxygenation (HDO) reaction, which requires large amounts and high pressures of hydrogen gas that reduces the cost-effectiveness of the process. In this study, the economic, environmental, and exergy analyses of two alternative scenarios for the catalytic production of SAF were considered. In both scenarios, SAF is produced through the catalytic deoxygenation of tall oil fatty acid (TOFA) via decarboxylation/decarbonylation (deCOx) – an approach requiring smaller amounts and lower pressures of hydrogen, feedstocks of lower purity and cost, and simpler supported metal catalysts relative to HDO. The material and energy balance was calculated using Aspen Plus process simulation software. Scenario 1 comprises a plant in which the catalytic deoxygenation of TOFA via deCOx is performed using hydrogen gas obtained commercially, while scenario 2 integrates catalytic deoxygenation with a plant that produces hydrogen gas via hydrothermal gasification. The study revealed that both scenarios were economically feasible relative to other pathways for SAF production, with the minimum fuel selling price (MFSP) of scenario 2 (USD$ 0.39/L) being lower than that of scenario 1 (USD$ 0.62/L). In addition to being the most economically viable, scenario 2 was also found to be preferable from an environmental standpoint since it also shows a lower global warming potential (GWP). Discounted cash flow analysis (DCFA) was used to determine other economic indicators such as net present value (NPV), internal rate of return (IRR), net rate of return (NRR) and payback period (PBP), which was estimated to be approximately 3 years for both scenarios. Finally, sensitivity analysis confirms that the raw materials and equipment purchase costs have the greatest impact on the MFSP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable Aviation Fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Techno-economic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life-cycle assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decarboxylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decarbonylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal gasification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pace, Robert B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santillan-Jimenez, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okolie, Jude A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">452</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:452</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">452</subfield></datafield></record></collection>
|
score |
7.4000835 |