A DFT + U study on diffusion and aggregation behavior of He atoms in Li
Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to...
Ausführliche Beschreibung
Autor*in: |
Zhou, Liangfu [verfasserIn] Deng, Wei [verfasserIn] Li, Yuhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computational materials science - Amsterdam [u.a.] : Elsevier Science, 1992, 227 |
---|---|
Übergeordnetes Werk: |
volume:227 |
DOI / URN: |
10.1016/j.commatsci.2023.112296 |
---|
Katalog-ID: |
ELV010386777 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010386777 | ||
003 | DE-627 | ||
005 | 20230613073400.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230613s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.commatsci.2023.112296 |2 doi | |
035 | |a (DE-627)ELV010386777 | ||
035 | |a (ELSEVIER)S0927-0256(23)00290-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.03 |2 bkl | ||
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Zhou, Liangfu |e verfasserin |4 aut | |
245 | 1 | 0 | |a A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. | ||
650 | 4 | |a Li | |
650 | 4 | |a Helium | |
650 | 4 | |a Diffusion and aggregation behavior | |
650 | 4 | |a First principles calculation | |
700 | 1 | |a Deng, Wei |e verfasserin |4 aut | |
700 | 1 | |a Li, Yuhong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational materials science |d Amsterdam [u.a.] : Elsevier Science, 1992 |g 227 |h Online-Ressource |w (DE-627)320522237 |w (DE-600)2014722-3 |w (DE-576)259271489 |7 nnns |
773 | 1 | 8 | |g volume:227 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.03 |j Methoden und Techniken der Ingenieurwissenschaften |q VZ |
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 227 |
author_variant |
l z lz w d wd y l yl |
---|---|
matchkey_str |
zhouliangfudengweiliyuhong:2023----:dtsuynifsoadgrgtobhvo |
hierarchy_sort_str |
2023 |
bklnumber |
50.03 51.00 |
publishDate |
2023 |
allfields |
10.1016/j.commatsci.2023.112296 doi (DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 DE-627 ger DE-627 rda eng 530 VZ 50.03 bkl 51.00 bkl Zhou, Liangfu verfasserin aut A DFT + U study on diffusion and aggregation behavior of He atoms in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. Li Helium Diffusion and aggregation behavior First principles calculation Deng, Wei verfasserin aut Li, Yuhong verfasserin aut Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier Science, 1992 227 Online-Ressource (DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 nnns volume:227 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 227 |
spelling |
10.1016/j.commatsci.2023.112296 doi (DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 DE-627 ger DE-627 rda eng 530 VZ 50.03 bkl 51.00 bkl Zhou, Liangfu verfasserin aut A DFT + U study on diffusion and aggregation behavior of He atoms in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. Li Helium Diffusion and aggregation behavior First principles calculation Deng, Wei verfasserin aut Li, Yuhong verfasserin aut Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier Science, 1992 227 Online-Ressource (DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 nnns volume:227 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 227 |
allfields_unstemmed |
10.1016/j.commatsci.2023.112296 doi (DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 DE-627 ger DE-627 rda eng 530 VZ 50.03 bkl 51.00 bkl Zhou, Liangfu verfasserin aut A DFT + U study on diffusion and aggregation behavior of He atoms in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. Li Helium Diffusion and aggregation behavior First principles calculation Deng, Wei verfasserin aut Li, Yuhong verfasserin aut Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier Science, 1992 227 Online-Ressource (DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 nnns volume:227 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 227 |
allfieldsGer |
10.1016/j.commatsci.2023.112296 doi (DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 DE-627 ger DE-627 rda eng 530 VZ 50.03 bkl 51.00 bkl Zhou, Liangfu verfasserin aut A DFT + U study on diffusion and aggregation behavior of He atoms in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. Li Helium Diffusion and aggregation behavior First principles calculation Deng, Wei verfasserin aut Li, Yuhong verfasserin aut Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier Science, 1992 227 Online-Ressource (DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 nnns volume:227 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 227 |
allfieldsSound |
10.1016/j.commatsci.2023.112296 doi (DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 DE-627 ger DE-627 rda eng 530 VZ 50.03 bkl 51.00 bkl Zhou, Liangfu verfasserin aut A DFT + U study on diffusion and aggregation behavior of He atoms in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. Li Helium Diffusion and aggregation behavior First principles calculation Deng, Wei verfasserin aut Li, Yuhong verfasserin aut Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier Science, 1992 227 Online-Ressource (DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 nnns volume:227 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 227 |
language |
English |
source |
Enthalten in Computational materials science 227 volume:227 |
sourceStr |
Enthalten in Computational materials science 227 volume:227 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Ingenieurwissenschaften Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Li Helium Diffusion and aggregation behavior First principles calculation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Computational materials science |
authorswithroles_txt_mv |
Zhou, Liangfu @@aut@@ Deng, Wei @@aut@@ Li, Yuhong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320522237 |
dewey-sort |
3530 |
id |
ELV010386777 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010386777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230613073400.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commatsci.2023.112296</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010386777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0256(23)00290-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Liangfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A DFT + U study on diffusion and aggregation behavior of He atoms in Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion and aggregation behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First principles calculation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational materials science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">227</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320522237</subfield><subfield code="w">(DE-600)2014722-3</subfield><subfield code="w">(DE-576)259271489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield></datafield></record></collection>
|
author |
Zhou, Liangfu |
spellingShingle |
Zhou, Liangfu ddc 530 bkl 50.03 bkl 51.00 misc Li misc Helium misc Diffusion and aggregation behavior misc First principles calculation A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
authorStr |
Zhou, Liangfu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320522237 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 50.03 bkl 51.00 bkl A DFT + U study on diffusion and aggregation behavior of He atoms in Li Li Helium Diffusion and aggregation behavior First principles calculation |
topic |
ddc 530 bkl 50.03 bkl 51.00 misc Li misc Helium misc Diffusion and aggregation behavior misc First principles calculation |
topic_unstemmed |
ddc 530 bkl 50.03 bkl 51.00 misc Li misc Helium misc Diffusion and aggregation behavior misc First principles calculation |
topic_browse |
ddc 530 bkl 50.03 bkl 51.00 misc Li misc Helium misc Diffusion and aggregation behavior misc First principles calculation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computational materials science |
hierarchy_parent_id |
320522237 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Computational materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320522237 (DE-600)2014722-3 (DE-576)259271489 |
title |
A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
ctrlnum |
(DE-627)ELV010386777 (ELSEVIER)S0927-0256(23)00290-2 |
title_full |
A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
author_sort |
Zhou, Liangfu |
journal |
Computational materials science |
journalStr |
Computational materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Liangfu Deng, Wei Li, Yuhong |
container_volume |
227 |
class |
530 VZ 50.03 bkl 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Liangfu |
doi_str_mv |
10.1016/j.commatsci.2023.112296 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
a dft + u study on diffusion and aggregation behavior of he atoms in li |
title_auth |
A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
abstract |
Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. |
abstractGer |
Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. |
abstract_unstemmed |
Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A DFT + U study on diffusion and aggregation behavior of He atoms in Li |
remote_bool |
true |
author2 |
Deng, Wei Li, Yuhong |
author2Str |
Deng, Wei Li, Yuhong |
ppnlink |
320522237 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.commatsci.2023.112296 |
up_date |
2024-07-06T17:48:31.317Z |
_version_ |
1803852826615480320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010386777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230613073400.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230613s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commatsci.2023.112296</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010386777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0256(23)00290-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Liangfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A DFT + U study on diffusion and aggregation behavior of He atoms in Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Future fusion power plants are designed based on the deuterium-tritium fusion reactions. Yet, as an element with a half-life of 12.5 years, tritium cannot be obtained in large quantities from nature. To meet future demand, an artificial nuclear reaction is needed to use tritium breeder materials to produce tritium. At present, Li2TiO3 is the most promising tritium breeder blanket material in fusion reactor. The existing experimental results show that helium irradiation will change the crystal structure of Li2TiO3 and cause embrittlement failure. In order to study the microscopic helium embrittlement mechanism of Li2TiO3, the diffusion and aggregation behavior of helium atoms in Li2TiO3 bulk was calculated by first principles. The reasons for the formation of the most stable interstitial configuration of helium atoms and helium clusters in Li2TiO3 bulk are explained by lattice vibrational theory and electronic structure analysis. At the same time, the relatively new research results in this work are mainly as follows: In Li2TiO3 bulk, the three spatial inversion symmetries Li vacancy helium atoms tend to diffuse from all Li vacancies to Li2 vacancies. Meanwhile, the Li2 vacancy is the most likely site for helium clusters to nucleate. And helium atoms and the helium clusters tend to arrange and grow along the plane of the Li layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion and aggregation behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First principles calculation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational materials science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">227</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320522237</subfield><subfield code="w">(DE-600)2014722-3</subfield><subfield code="w">(DE-576)259271489</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield></datafield></record></collection>
|
score |
7.4017696 |