Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string
Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results sh...
Ausführliche Beschreibung
Autor*in: |
Wang, Yu [verfasserIn] Lou, Min [verfasserIn] Wang, Yangyang [verfasserIn] Fan, Changhong [verfasserIn] Tian, Chao [verfasserIn] Qi, Xiaoliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean engineering - Amsterdam [u.a.] : Elsevier Science, 1970, 280 |
---|---|
Übergeordnetes Werk: |
volume:280 |
DOI / URN: |
10.1016/j.oceaneng.2023.114542 |
---|
Katalog-ID: |
ELV010481915 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010481915 | ||
003 | DE-627 | ||
005 | 20230926130530.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230616s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2023.114542 |2 doi | |
035 | |a (DE-627)ELV010481915 | ||
035 | |a (ELSEVIER)S0029-8018(23)00926-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Wang, Yu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. | ||
650 | 4 | |a Riserless drill string | |
650 | 4 | |a Rotation rate | |
650 | 4 | |a Vortex-induced vibration | |
650 | 4 | |a Dominant frequency | |
650 | 4 | |a Equilibrium deflection | |
650 | 4 | |a Vibration amplitude | |
700 | 1 | |a Lou, Min |e verfasserin |0 (orcid)0000-0003-2906-3390 |4 aut | |
700 | 1 | |a Wang, Yangyang |e verfasserin |4 aut | |
700 | 1 | |a Fan, Changhong |e verfasserin |4 aut | |
700 | 1 | |a Tian, Chao |e verfasserin |4 aut | |
700 | 1 | |a Qi, Xiaoliang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean engineering |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 280 |h Online-Ressource |w (DE-627)30658977X |w (DE-600)1498543-3 |w (DE-576)259484164 |x 0029-8018 |7 nnns |
773 | 1 | 8 | |g volume:280 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 280 |
author_variant |
y w yw m l ml y w yw c f cf c t ct x q xq |
---|---|
matchkey_str |
article:00298018:2023----::xeietlnetgtootefetfoainaencretpeoteyairsos |
hierarchy_sort_str |
2023 |
bklnumber |
50.92 |
publishDate |
2023 |
allfields |
10.1016/j.oceaneng.2023.114542 doi (DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Wang, Yu verfasserin aut Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude Lou, Min verfasserin (orcid)0000-0003-2906-3390 aut Wang, Yangyang verfasserin aut Fan, Changhong verfasserin aut Tian, Chao verfasserin aut Qi, Xiaoliang verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 280 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:280 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 280 |
spelling |
10.1016/j.oceaneng.2023.114542 doi (DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Wang, Yu verfasserin aut Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude Lou, Min verfasserin (orcid)0000-0003-2906-3390 aut Wang, Yangyang verfasserin aut Fan, Changhong verfasserin aut Tian, Chao verfasserin aut Qi, Xiaoliang verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 280 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:280 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 280 |
allfields_unstemmed |
10.1016/j.oceaneng.2023.114542 doi (DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Wang, Yu verfasserin aut Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude Lou, Min verfasserin (orcid)0000-0003-2906-3390 aut Wang, Yangyang verfasserin aut Fan, Changhong verfasserin aut Tian, Chao verfasserin aut Qi, Xiaoliang verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 280 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:280 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 280 |
allfieldsGer |
10.1016/j.oceaneng.2023.114542 doi (DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Wang, Yu verfasserin aut Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude Lou, Min verfasserin (orcid)0000-0003-2906-3390 aut Wang, Yangyang verfasserin aut Fan, Changhong verfasserin aut Tian, Chao verfasserin aut Qi, Xiaoliang verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 280 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:280 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 280 |
allfieldsSound |
10.1016/j.oceaneng.2023.114542 doi (DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Wang, Yu verfasserin aut Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude Lou, Min verfasserin (orcid)0000-0003-2906-3390 aut Wang, Yangyang verfasserin aut Fan, Changhong verfasserin aut Tian, Chao verfasserin aut Qi, Xiaoliang verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 280 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:280 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 280 |
language |
English |
source |
Enthalten in Ocean engineering 280 volume:280 |
sourceStr |
Enthalten in Ocean engineering 280 volume:280 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Ocean engineering |
authorswithroles_txt_mv |
Wang, Yu @@aut@@ Lou, Min @@aut@@ Wang, Yangyang @@aut@@ Fan, Changhong @@aut@@ Tian, Chao @@aut@@ Qi, Xiaoliang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
30658977X |
dewey-sort |
3690 |
id |
ELV010481915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010481915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.114542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010481915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)00926-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riserless drill string</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotation rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-induced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dominant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium deflection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration amplitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2906-3390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yangyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Changhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">280</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280</subfield></datafield></record></collection>
|
author |
Wang, Yu |
spellingShingle |
Wang, Yu ddc 690 bkl 50.92 misc Riserless drill string misc Rotation rate misc Vortex-induced vibration misc Dominant frequency misc Equilibrium deflection misc Vibration amplitude Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
authorStr |
Wang, Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30658977X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-8018 |
topic_title |
690 VZ 50.92 bkl Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string Riserless drill string Rotation rate Vortex-induced vibration Dominant frequency Equilibrium deflection Vibration amplitude |
topic |
ddc 690 bkl 50.92 misc Riserless drill string misc Rotation rate misc Vortex-induced vibration misc Dominant frequency misc Equilibrium deflection misc Vibration amplitude |
topic_unstemmed |
ddc 690 bkl 50.92 misc Riserless drill string misc Rotation rate misc Vortex-induced vibration misc Dominant frequency misc Equilibrium deflection misc Vibration amplitude |
topic_browse |
ddc 690 bkl 50.92 misc Riserless drill string misc Rotation rate misc Vortex-induced vibration misc Dominant frequency misc Equilibrium deflection misc Vibration amplitude |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean engineering |
hierarchy_parent_id |
30658977X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Ocean engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 |
title |
Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
ctrlnum |
(DE-627)ELV010481915 (ELSEVIER)S0029-8018(23)00926-5 |
title_full |
Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
author_sort |
Wang, Yu |
journal |
Ocean engineering |
journalStr |
Ocean engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Yu Lou, Min Wang, Yangyang Fan, Changhong Tian, Chao Qi, Xiaoliang |
container_volume |
280 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yu |
doi_str_mv |
10.1016/j.oceaneng.2023.114542 |
normlink |
(ORCID)0000-0003-2906-3390 |
normlink_prefix_str_mv |
(orcid)0000-0003-2906-3390 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
title_auth |
Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
abstract |
Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. |
abstractGer |
Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. |
abstract_unstemmed |
Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string |
remote_bool |
true |
author2 |
Lou, Min Wang, Yangyang Fan, Changhong Tian, Chao Qi, Xiaoliang |
author2Str |
Lou, Min Wang, Yangyang Fan, Changhong Tian, Chao Qi, Xiaoliang |
ppnlink |
30658977X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.oceaneng.2023.114542 |
up_date |
2024-07-06T18:08:43.449Z |
_version_ |
1803854097628004352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010481915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.114542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010481915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)00926-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic responses of rotating riserless drill string were investigated by varying rotation rate and current speed. Rotation rate ranged from 20 to 180 r/min, current speed ranged from 0.1 to 0.8 m/s, corresponding to Reynolds number of 1600–12,800 and rotation Reynolds number of 134–1206. Results show that the vibration energy of the rotating drill string is concentrated in rotation frequency, and its frequency doublings are stable in time series; equilibrium deflections are consistent in cross-flow (CF) and in-line (IL) directions and trajectory shows an oval-shape in still water. IL dominant frequency of rotating drilling string coupling VIV decreases, while CF dominant frequency and overall section dominant frequency increase with rotation rate. Vibration frequency transitions from high to low and its bandwidth increases in high shear-rate flow. Equilibrium deflection and vibration amplitude are higher than those of non-rotating drill string when Re ≤ 2400 due to the strong coupling of rotation and current. Rotation reduces mode participation, vibration envelopes are deflected to one side with both traveling and standing waves coexisting. Vibration amplitude reaches a maximum due to multiple resonances. Therefore, rotation rate near natural frequency should be avoided, and the rotation interference effect at low reduced velocity should not be overlooked.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riserless drill string</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotation rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-induced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dominant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium deflection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration amplitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2906-3390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yangyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Changhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">280</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280</subfield></datafield></record></collection>
|
score |
7.3996477 |