Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries
Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li...
Ausführliche Beschreibung
Autor*in: |
Bai, Maohui [verfasserIn] Huang, Zimo [verfasserIn] Hong, Bo [verfasserIn] Hu, Lina [verfasserIn] Li, Tao [verfasserIn] Zhu, Huali [verfasserIn] Chen, Zhaoyong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ceramics international - Amsterdam [u.a.] : Elsevier Science, 1995, 49, Seite 25389-25395 |
---|---|
Übergeordnetes Werk: |
volume:49 ; pages:25389-25395 |
DOI / URN: |
10.1016/j.ceramint.2023.05.076 |
---|
Katalog-ID: |
ELV010494766 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010494766 | ||
003 | DE-627 | ||
005 | 20231121093015.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230616s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2023.05.076 |2 doi | |
035 | |a (DE-627)ELV010494766 | ||
035 | |a (ELSEVIER)S0272-8842(23)01323-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.60 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Bai, Maohui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. | ||
650 | 4 | |a Poly(methyl methacrylate) oligomer | |
650 | 4 | |a Li metal anode | |
650 | 4 | |a Air stability | |
650 | 4 | |a Gel polymer electrolyte | |
700 | 1 | |a Huang, Zimo |e verfasserin |4 aut | |
700 | 1 | |a Hong, Bo |e verfasserin |4 aut | |
700 | 1 | |a Hu, Lina |e verfasserin |4 aut | |
700 | 1 | |a Li, Tao |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Huali |e verfasserin |4 aut | |
700 | 1 | |a Chen, Zhaoyong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ceramics international |d Amsterdam [u.a.] : Elsevier Science, 1995 |g 49, Seite 25389-25395 |h Online-Ressource |w (DE-627)320584305 |w (DE-600)2018052-4 |w (DE-576)25523063X |x 0272-8842 |7 nnns |
773 | 1 | 8 | |g volume:49 |g pages:25389-25395 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
951 | |a AR | ||
952 | |d 49 |h 25389-25395 |
author_variant |
m b mb z h zh b h bh l h lh t l tl h z hz z c zc |
---|---|
matchkey_str |
article:02728842:2023----::einbeisaladediereieaaoeitelgmraefr |
hierarchy_sort_str |
2023 |
bklnumber |
51.60 58.45 |
publishDate |
2023 |
allfields |
10.1016/j.ceramint.2023.05.076 doi (DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Bai, Maohui verfasserin aut Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte Huang, Zimo verfasserin aut Hong, Bo verfasserin aut Hu, Lina verfasserin aut Li, Tao verfasserin aut Zhu, Huali verfasserin aut Chen, Zhaoyong verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 49, Seite 25389-25395 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:49 pages:25389-25395 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 49 25389-25395 |
spelling |
10.1016/j.ceramint.2023.05.076 doi (DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Bai, Maohui verfasserin aut Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte Huang, Zimo verfasserin aut Hong, Bo verfasserin aut Hu, Lina verfasserin aut Li, Tao verfasserin aut Zhu, Huali verfasserin aut Chen, Zhaoyong verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 49, Seite 25389-25395 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:49 pages:25389-25395 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 49 25389-25395 |
allfields_unstemmed |
10.1016/j.ceramint.2023.05.076 doi (DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Bai, Maohui verfasserin aut Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte Huang, Zimo verfasserin aut Hong, Bo verfasserin aut Hu, Lina verfasserin aut Li, Tao verfasserin aut Zhu, Huali verfasserin aut Chen, Zhaoyong verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 49, Seite 25389-25395 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:49 pages:25389-25395 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 49 25389-25395 |
allfieldsGer |
10.1016/j.ceramint.2023.05.076 doi (DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Bai, Maohui verfasserin aut Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte Huang, Zimo verfasserin aut Hong, Bo verfasserin aut Hu, Lina verfasserin aut Li, Tao verfasserin aut Zhu, Huali verfasserin aut Chen, Zhaoyong verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 49, Seite 25389-25395 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:49 pages:25389-25395 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 49 25389-25395 |
allfieldsSound |
10.1016/j.ceramint.2023.05.076 doi (DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 DE-627 ger DE-627 rda eng 670 VZ 51.60 bkl 58.45 bkl Bai, Maohui verfasserin aut Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte Huang, Zimo verfasserin aut Hong, Bo verfasserin aut Hu, Lina verfasserin aut Li, Tao verfasserin aut Zhu, Huali verfasserin aut Chen, Zhaoyong verfasserin aut Enthalten in Ceramics international Amsterdam [u.a.] : Elsevier Science, 1995 49, Seite 25389-25395 Online-Ressource (DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X 0272-8842 nnns volume:49 pages:25389-25395 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 49 25389-25395 |
language |
English |
source |
Enthalten in Ceramics international 49, Seite 25389-25395 volume:49 pages:25389-25395 |
sourceStr |
Enthalten in Ceramics international 49, Seite 25389-25395 volume:49 pages:25389-25395 |
format_phy_str_mv |
Article |
bklname |
Keramische Werkstoffe Hartstoffe Gesteinshüttenkunde |
institution |
findex.gbv.de |
topic_facet |
Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Ceramics international |
authorswithroles_txt_mv |
Bai, Maohui @@aut@@ Huang, Zimo @@aut@@ Hong, Bo @@aut@@ Hu, Lina @@aut@@ Li, Tao @@aut@@ Zhu, Huali @@aut@@ Chen, Zhaoyong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320584305 |
dewey-sort |
3670 |
id |
ELV010494766 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010494766</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2023.05.076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010494766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(23)01323-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Maohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poly(methyl methacrylate) oligomer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li metal anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gel polymer electrolyte</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Lina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Huali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhaoyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ceramics international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1995</subfield><subfield code="g">49, Seite 25389-25395</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320584305</subfield><subfield code="w">(DE-600)2018052-4</subfield><subfield code="w">(DE-576)25523063X</subfield><subfield code="x">0272-8842</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">pages:25389-25395</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="h">25389-25395</subfield></datafield></record></collection>
|
author |
Bai, Maohui |
spellingShingle |
Bai, Maohui ddc 670 bkl 51.60 bkl 58.45 misc Poly(methyl methacrylate) oligomer misc Li metal anode misc Air stability misc Gel polymer electrolyte Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
authorStr |
Bai, Maohui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320584305 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0272-8842 |
topic_title |
670 VZ 51.60 bkl 58.45 bkl Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries Poly(methyl methacrylate) oligomer Li metal anode Air stability Gel polymer electrolyte |
topic |
ddc 670 bkl 51.60 bkl 58.45 misc Poly(methyl methacrylate) oligomer misc Li metal anode misc Air stability misc Gel polymer electrolyte |
topic_unstemmed |
ddc 670 bkl 51.60 bkl 58.45 misc Poly(methyl methacrylate) oligomer misc Li metal anode misc Air stability misc Gel polymer electrolyte |
topic_browse |
ddc 670 bkl 51.60 bkl 58.45 misc Poly(methyl methacrylate) oligomer misc Li metal anode misc Air stability misc Gel polymer electrolyte |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ceramics international |
hierarchy_parent_id |
320584305 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Ceramics international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320584305 (DE-600)2018052-4 (DE-576)25523063X |
title |
Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
ctrlnum |
(DE-627)ELV010494766 (ELSEVIER)S0272-8842(23)01323-8 |
title_full |
Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
author_sort |
Bai, Maohui |
journal |
Ceramics international |
journalStr |
Ceramics international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
25389 |
author_browse |
Bai, Maohui Huang, Zimo Hong, Bo Hu, Lina Li, Tao Zhu, Huali Chen, Zhaoyong |
container_volume |
49 |
class |
670 VZ 51.60 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bai, Maohui |
doi_str_mv |
10.1016/j.ceramint.2023.05.076 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
designable air-stable and dendrite-free li metal anode via the oligomer layer for in-situ gel polymer batteries |
title_auth |
Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
abstract |
Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. |
abstractGer |
Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. |
abstract_unstemmed |
Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries |
remote_bool |
true |
author2 |
Huang, Zimo Hong, Bo Hu, Lina Li, Tao Zhu, Huali Chen, Zhaoyong |
author2Str |
Huang, Zimo Hong, Bo Hu, Lina Li, Tao Zhu, Huali Chen, Zhaoyong |
ppnlink |
320584305 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ceramint.2023.05.076 |
up_date |
2024-07-06T18:11:23.374Z |
_version_ |
1803854265320472576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010494766</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2023.05.076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010494766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(23)01323-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Maohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Designable air-stable and dendrite-free Li metal anode via the oligomer layer for in-situ gel polymer batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lithium (Li) metal anode has been an indispensable electrode material in the development of the future battery system, especially in the pursuit of energy density of the solid state battery. However, the poor air stability and dendrite problems are stumbling blocks to the practical application of Li metal anode. Herein, we design the poly(methyl methacrylate) (PMMA) oligomer coating layer for the surface of Li metal anode (Li-PMMA). The Li-PMMA anode can obtain hydrophobic oxygen resistance ability and maintain air stability for 48h in the environment of 70% relative humidity. When applied to the liquid battery, the PMMA oligomer can open the double bond by the catalysis of Li+ and repolymerize into the PMMA gel polymer electrolyte (GPE). As a result, the cathode and anode are cohered together by GPE to become an in-situ GPE battery. The GPE displays high ionic conductivity (7.92 mS cm-1) and perfect interfacial contact with various electrodes. The newly designed in-situ GPE is employed to Li||Li symmetric battery without separator, which can run up to 2000 h with the overpotential of only 2.8 mV. Applications of the in-situ GPE in Li-S battery and 5000mAh LiNi0.5Co0.2Mn0.3O2/Li pouch cell both obtain excellent electrochemical performance. Our strategy may provide a versatile and practical approach to promote the large-scale application for solid state Li metal batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poly(methyl methacrylate) oligomer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li metal anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gel polymer electrolyte</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Lina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Huali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhaoyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ceramics international</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1995</subfield><subfield code="g">49, Seite 25389-25395</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320584305</subfield><subfield code="w">(DE-600)2018052-4</subfield><subfield code="w">(DE-576)25523063X</subfield><subfield code="x">0272-8842</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">pages:25389-25395</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="h">25389-25395</subfield></datafield></record></collection>
|
score |
7.3998127 |