Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia
Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone...
Ausführliche Beschreibung
Autor*in: |
Coward, Andrew J. [verfasserIn] Slim, Anja C. [verfasserIn] Brugger, Joël [verfasserIn] Wilson, Sasha [verfasserIn] Williams, Tim [verfasserIn] Pillans, Brad [verfasserIn] Maksimenko, Anton [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical geology - New York, NY [u.a.] : Elsevier, 1966, 622 |
---|---|
Übergeordnetes Werk: |
volume:622 |
DOI / URN: |
10.1016/j.chemgeo.2023.121336 |
---|
Katalog-ID: |
ELV010503579 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010503579 | ||
003 | DE-627 | ||
005 | 20230616073334.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230616s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemgeo.2023.121336 |2 doi | |
035 | |a (DE-627)ELV010503579 | ||
035 | |a (ELSEVIER)S0009-2541(23)00036-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.32 |2 bkl | ||
100 | 1 | |a Coward, Andrew J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. | ||
650 | 4 | |a Zebra rock | |
650 | 4 | |a Liesegang banding | |
650 | 4 | |a Self-organisation | |
650 | 4 | |a Advanced argillic hydrothermal alteration | |
650 | 4 | |a Acid-sulfate soil | |
700 | 1 | |a Slim, Anja C. |e verfasserin |4 aut | |
700 | 1 | |a Brugger, Joël |e verfasserin |4 aut | |
700 | 1 | |a Wilson, Sasha |e verfasserin |4 aut | |
700 | 1 | |a Williams, Tim |e verfasserin |4 aut | |
700 | 1 | |a Pillans, Brad |e verfasserin |4 aut | |
700 | 1 | |a Maksimenko, Anton |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical geology |d New York, NY [u.a.] : Elsevier, 1966 |g 622 |h Online-Ressource |w (DE-627)302724389 |w (DE-600)1492506-0 |w (DE-576)08195283X |x 0009-2541 |7 nnns |
773 | 1 | 8 | |g volume:622 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.32 |j Geochemie |q VZ |
951 | |a AR | ||
952 | |d 622 |
author_variant |
a j c aj ajc a c s ac acs j b jb s w sw t w tw b p bp a m am |
---|---|
matchkey_str |
article:00092541:2023----::ieaoyngohmsroptenomtoizbaokrmh |
hierarchy_sort_str |
2023 |
bklnumber |
38.32 |
publishDate |
2023 |
allfields |
10.1016/j.chemgeo.2023.121336 doi (DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Coward, Andrew J. verfasserin aut Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil Slim, Anja C. verfasserin aut Brugger, Joël verfasserin aut Wilson, Sasha verfasserin aut Williams, Tim verfasserin aut Pillans, Brad verfasserin aut Maksimenko, Anton verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 622 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:622 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 622 |
spelling |
10.1016/j.chemgeo.2023.121336 doi (DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Coward, Andrew J. verfasserin aut Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil Slim, Anja C. verfasserin aut Brugger, Joël verfasserin aut Wilson, Sasha verfasserin aut Williams, Tim verfasserin aut Pillans, Brad verfasserin aut Maksimenko, Anton verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 622 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:622 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 622 |
allfields_unstemmed |
10.1016/j.chemgeo.2023.121336 doi (DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Coward, Andrew J. verfasserin aut Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil Slim, Anja C. verfasserin aut Brugger, Joël verfasserin aut Wilson, Sasha verfasserin aut Williams, Tim verfasserin aut Pillans, Brad verfasserin aut Maksimenko, Anton verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 622 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:622 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 622 |
allfieldsGer |
10.1016/j.chemgeo.2023.121336 doi (DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Coward, Andrew J. verfasserin aut Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil Slim, Anja C. verfasserin aut Brugger, Joël verfasserin aut Wilson, Sasha verfasserin aut Williams, Tim verfasserin aut Pillans, Brad verfasserin aut Maksimenko, Anton verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 622 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:622 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 622 |
allfieldsSound |
10.1016/j.chemgeo.2023.121336 doi (DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 DE-627 ger DE-627 rda eng 550 VZ 38.32 bkl Coward, Andrew J. verfasserin aut Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil Slim, Anja C. verfasserin aut Brugger, Joël verfasserin aut Wilson, Sasha verfasserin aut Williams, Tim verfasserin aut Pillans, Brad verfasserin aut Maksimenko, Anton verfasserin aut Enthalten in Chemical geology New York, NY [u.a.] : Elsevier, 1966 622 Online-Ressource (DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X 0009-2541 nnns volume:622 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.32 Geochemie VZ AR 622 |
language |
English |
source |
Enthalten in Chemical geology 622 volume:622 |
sourceStr |
Enthalten in Chemical geology 622 volume:622 |
format_phy_str_mv |
Article |
bklname |
Geochemie |
institution |
findex.gbv.de |
topic_facet |
Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Chemical geology |
authorswithroles_txt_mv |
Coward, Andrew J. @@aut@@ Slim, Anja C. @@aut@@ Brugger, Joël @@aut@@ Wilson, Sasha @@aut@@ Williams, Tim @@aut@@ Pillans, Brad @@aut@@ Maksimenko, Anton @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302724389 |
dewey-sort |
3550 |
id |
ELV010503579 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010503579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230616073334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemgeo.2023.121336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010503579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2541(23)00036-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coward, Andrew J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zebra rock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liesegang banding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced argillic hydrothermal alteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid-sulfate soil</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Slim, Anja C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brugger, Joël</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Sasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pillans, Brad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksimenko, Anton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical geology</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1966</subfield><subfield code="g">622</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302724389</subfield><subfield code="w">(DE-600)1492506-0</subfield><subfield code="w">(DE-576)08195283X</subfield><subfield code="x">0009-2541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">622</subfield></datafield></record></collection>
|
author |
Coward, Andrew J. |
spellingShingle |
Coward, Andrew J. ddc 550 bkl 38.32 misc Zebra rock misc Liesegang banding misc Self-organisation misc Advanced argillic hydrothermal alteration misc Acid-sulfate soil Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
authorStr |
Coward, Andrew J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302724389 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0009-2541 |
topic_title |
550 VZ 38.32 bkl Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia Zebra rock Liesegang banding Self-organisation Advanced argillic hydrothermal alteration Acid-sulfate soil |
topic |
ddc 550 bkl 38.32 misc Zebra rock misc Liesegang banding misc Self-organisation misc Advanced argillic hydrothermal alteration misc Acid-sulfate soil |
topic_unstemmed |
ddc 550 bkl 38.32 misc Zebra rock misc Liesegang banding misc Self-organisation misc Advanced argillic hydrothermal alteration misc Acid-sulfate soil |
topic_browse |
ddc 550 bkl 38.32 misc Zebra rock misc Liesegang banding misc Self-organisation misc Advanced argillic hydrothermal alteration misc Acid-sulfate soil |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical geology |
hierarchy_parent_id |
302724389 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Chemical geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302724389 (DE-600)1492506-0 (DE-576)08195283X |
title |
Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
ctrlnum |
(DE-627)ELV010503579 (ELSEVIER)S0009-2541(23)00036-0 |
title_full |
Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
author_sort |
Coward, Andrew J. |
journal |
Chemical geology |
journalStr |
Chemical geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Coward, Andrew J. Slim, Anja C. Brugger, Joël Wilson, Sasha Williams, Tim Pillans, Brad Maksimenko, Anton |
container_volume |
622 |
class |
550 VZ 38.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Coward, Andrew J. |
doi_str_mv |
10.1016/j.chemgeo.2023.121336 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
mineralogy and geochemistry of pattern formation in zebra rock from the east kimberley, australia |
title_auth |
Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
abstract |
Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. |
abstractGer |
Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. |
abstract_unstemmed |
Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia |
remote_bool |
true |
author2 |
Slim, Anja C. Brugger, Joël Wilson, Sasha Williams, Tim Pillans, Brad Maksimenko, Anton |
author2Str |
Slim, Anja C. Brugger, Joël Wilson, Sasha Williams, Tim Pillans, Brad Maksimenko, Anton |
ppnlink |
302724389 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chemgeo.2023.121336 |
up_date |
2024-07-06T18:13:19.020Z |
_version_ |
1803854386583044096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010503579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230616073334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230616s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemgeo.2023.121336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010503579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2541(23)00036-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coward, Andrew J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mineralogy and geochemistry of pattern formation in zebra rock from the East Kimberley, Australia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rhythmic patterns are widespread in geological materials. A particularly striking, macroscale example is zebra rock from the East Kimberley region of northwestern Australia. The rock is famous for its distinctive, rhythmically ordered, iron-oxide pattern, which transforms an Ediacaran-aged siltstone into an attractive semi-precious gemstone. Several different formation mechanisms of this pattern have been proposed in previous studies, with the two most prominent being redoximorphic banding in acid-sulfate soils and Liesegang banding in an acidic hydrothermal system. Using a combination of mineralogy, geochemistry and geological context, this study attempts to confirm both the occurrence and relative timing of acid-sulfate fluid rock interactions in zebra rock and seeks to determine whether pedogenic processes or hydrothermal alteration can better explain the origin of these patterns. We present the first evidence that the iron-oxide banding developed simultaneously with a period of aluminosilicate dissolution, clay precipitation, and fluid flow, consistent with the infiltration of an acidic fluid. This conclusion was evidenced through the hexagonal-platelet morphology of the hematite pigment, kaolinite-hematite textural relationships, and a paleoflow direction preserved in the asymmetric intensity of the hematite concentration. However, while the mineralogy of zebra rock strongly suggests interactions with acid-sulfates, the origin and temperature of the fluid could not be conclusively determined. Supporting a hydrothermal origin, a thorough analysis of zebra rock mineralogy revealed a mineral assemblage consistent with advanced argillic hydrothermal alteration, wherein pyrophyillite, kaolinite, and dickite indicate minimum palaeotemperatures upwards of 120 °C and the presence of alunite and a svanbergite-woodhouseite solid solution suggests oxidising, acidic (pH <5) conditions. The low Rb/Sr ratio and relative immobility of rare earth elements in most zebra rock deposits are also consistent with an acidic hydrothermal origin. Further support was also observed in the mineralogical trends between examined outcrops, grading from alunite-type to kaolinite/dickite-type facies in a south-west direction. But despite this evidence, the acid-sulfate soil hypothesis could not be refuted and was itself supported by the large number of pyrite dissolution voids both underlying and within the patterned layer. Furthermore, the consistent compaction of reduction spheroids, dissolution voids, and pseudomorphic inclusions within the light banding of zebra rock are in agreement with near-surface supergene weathering, ruling out hypogene hydrothermal alteration. A mechanism of pattern formation is proposed whereby zebra rock banding is formed by the Liesegang phenomenon, driven by the oxidation of Fe2+ ions during the infiltration of an Fe2+-rich, acid-sulfate fluid into oxidising host sediments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zebra rock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liesegang banding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced argillic hydrothermal alteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid-sulfate soil</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Slim, Anja C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brugger, Joël</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Sasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pillans, Brad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksimenko, Anton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical geology</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1966</subfield><subfield code="g">622</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302724389</subfield><subfield code="w">(DE-600)1492506-0</subfield><subfield code="w">(DE-576)08195283X</subfield><subfield code="x">0009-2541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">622</subfield></datafield></record></collection>
|
score |
7.4010077 |