Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model
The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context....
Ausführliche Beschreibung
Autor*in: |
Liu, Yuanyuan [verfasserIn] Yang, Youlong [verfasserIn] Sun, Liqin [verfasserIn] Huang, An [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Probabilistic linguistic preference relation Large-scale group decision making |
---|
Übergeordnetes Werk: |
Enthalten in: Expert systems with applications - Amsterdam [u.a.] : Elsevier Science, 1990, 230 |
---|---|
Übergeordnetes Werk: |
volume:230 |
DOI / URN: |
10.1016/j.eswa.2023.120645 |
---|
Katalog-ID: |
ELV010519629 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV010519629 | ||
003 | DE-627 | ||
005 | 20231205153831.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230617s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2023.120645 |2 doi | |
035 | |a (DE-627)ELV010519629 | ||
035 | |a (ELSEVIER)S0957-4174(23)01147-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Liu, Yuanyuan |e verfasserin |0 (orcid)0000-0002-7810-5473 |4 aut | |
245 | 1 | 0 | |a Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. | ||
650 | 4 | |a Probabilistic linguistic preference relation | |
650 | 4 | |a Consensus reaching process | |
650 | 4 | |a Large-scale group decision making | |
650 | 4 | |a Multi-granular probabilistic linguistic information | |
650 | 4 | |a Personalized individual semantics | |
700 | 1 | |a Yang, Youlong |e verfasserin |0 (orcid)0000-0002-3706-1312 |4 aut | |
700 | 1 | |a Sun, Liqin |e verfasserin |4 aut | |
700 | 1 | |a Huang, An |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Expert systems with applications |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 230 |h Online-Ressource |w (DE-627)320577961 |w (DE-600)2017237-0 |w (DE-576)11481807X |7 nnns |
773 | 1 | 8 | |g volume:230 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 230 |
author_variant |
y l yl y y yy l s ls a h ah |
---|---|
matchkey_str |
liuyuanyuanyangyoulongsunliqinhuangan:2023----:aaigutgauapoaiitcigitcnomtoilreclgopeiinaigproaieid |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.eswa.2023.120645 doi (DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Liu, Yuanyuan verfasserin (orcid)0000-0002-7810-5473 aut Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics Yang, Youlong verfasserin (orcid)0000-0002-3706-1312 aut Sun, Liqin verfasserin aut Huang, An verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 230 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:230 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 230 |
spelling |
10.1016/j.eswa.2023.120645 doi (DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Liu, Yuanyuan verfasserin (orcid)0000-0002-7810-5473 aut Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics Yang, Youlong verfasserin (orcid)0000-0002-3706-1312 aut Sun, Liqin verfasserin aut Huang, An verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 230 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:230 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 230 |
allfields_unstemmed |
10.1016/j.eswa.2023.120645 doi (DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Liu, Yuanyuan verfasserin (orcid)0000-0002-7810-5473 aut Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics Yang, Youlong verfasserin (orcid)0000-0002-3706-1312 aut Sun, Liqin verfasserin aut Huang, An verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 230 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:230 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 230 |
allfieldsGer |
10.1016/j.eswa.2023.120645 doi (DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Liu, Yuanyuan verfasserin (orcid)0000-0002-7810-5473 aut Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics Yang, Youlong verfasserin (orcid)0000-0002-3706-1312 aut Sun, Liqin verfasserin aut Huang, An verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 230 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:230 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 230 |
allfieldsSound |
10.1016/j.eswa.2023.120645 doi (DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Liu, Yuanyuan verfasserin (orcid)0000-0002-7810-5473 aut Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics Yang, Youlong verfasserin (orcid)0000-0002-3706-1312 aut Sun, Liqin verfasserin aut Huang, An verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 230 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:230 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 230 |
language |
English |
source |
Enthalten in Expert systems with applications 230 volume:230 |
sourceStr |
Enthalten in Expert systems with applications 230 volume:230 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Expert systems with applications |
authorswithroles_txt_mv |
Liu, Yuanyuan @@aut@@ Yang, Youlong @@aut@@ Sun, Liqin @@aut@@ Huang, An @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320577961 |
dewey-sort |
14 |
id |
ELV010519629 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010519629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230617s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.120645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010519629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)01147-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7810-5473</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistic linguistic preference relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consensus reaching process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale group decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-granular probabilistic linguistic information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized individual semantics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Youlong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3706-1312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Liqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">230</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">230</subfield></datafield></record></collection>
|
author |
Liu, Yuanyuan |
spellingShingle |
Liu, Yuanyuan ddc 004 bkl 54.72 misc Probabilistic linguistic preference relation misc Consensus reaching process misc Large-scale group decision making misc Multi-granular probabilistic linguistic information misc Personalized individual semantics Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
authorStr |
Liu, Yuanyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320577961 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.72 bkl Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model Probabilistic linguistic preference relation Consensus reaching process Large-scale group decision making Multi-granular probabilistic linguistic information Personalized individual semantics |
topic |
ddc 004 bkl 54.72 misc Probabilistic linguistic preference relation misc Consensus reaching process misc Large-scale group decision making misc Multi-granular probabilistic linguistic information misc Personalized individual semantics |
topic_unstemmed |
ddc 004 bkl 54.72 misc Probabilistic linguistic preference relation misc Consensus reaching process misc Large-scale group decision making misc Multi-granular probabilistic linguistic information misc Personalized individual semantics |
topic_browse |
ddc 004 bkl 54.72 misc Probabilistic linguistic preference relation misc Consensus reaching process misc Large-scale group decision making misc Multi-granular probabilistic linguistic information misc Personalized individual semantics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Expert systems with applications |
hierarchy_parent_id |
320577961 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Expert systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X |
title |
Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
ctrlnum |
(DE-627)ELV010519629 (ELSEVIER)S0957-4174(23)01147-8 |
title_full |
Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
author_sort |
Liu, Yuanyuan |
journal |
Expert systems with applications |
journalStr |
Expert systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Yuanyuan Yang, Youlong Sun, Liqin Huang, An |
container_volume |
230 |
class |
004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yuanyuan |
doi_str_mv |
10.1016/j.eswa.2023.120645 |
normlink |
(ORCID)0000-0002-7810-5473 (ORCID)0000-0002-3706-1312 |
normlink_prefix_str_mv |
(orcid)0000-0002-7810-5473 (orcid)0000-0002-3706-1312 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
managing multi-granular probabilistic linguistic information in large-scale group decision making: a personalized individual semantics-based consensus model |
title_auth |
Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
abstract |
The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. |
abstractGer |
The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. |
abstract_unstemmed |
The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model |
remote_bool |
true |
author2 |
Yang, Youlong Sun, Liqin Huang, An |
author2Str |
Yang, Youlong Sun, Liqin Huang, An |
ppnlink |
320577961 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2023.120645 |
up_date |
2024-07-06T18:16:42.472Z |
_version_ |
1803854599918977024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV010519629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230617s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.120645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010519629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)01147-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7810-5473</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managing multi-granular probabilistic linguistic information in large-scale group decision making: A personalized individual semantics-based consensus model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The multi-granular probabilistic linguistic modeling allows decision makers to express cognitive information using multiple linguistic term sets based on their preferences. However, personalized individual semantics (PIS) can lead to different meanings of the same word within the linguistic context. To address this issue and manage consensus in large-scale group decision making, this study proposes a decision framework that employs multi-granular probabilistic linguistic preference relations (MGPLPRs). First, a transformation method is presented to unify different granularity levels of MGPLPRs, thus ensuring the consistency of granularity. Moreover, a consistency-driven optimization model is constructed to generate the numerical scales with PIS for different experts. Thereafter, a two-stage consensus reaching process (CRP) is developed, including both within-cluster and across-cluster CRP, to achieve group consensus. The experts’ original weights are derived from a social network, taking into account the trust relationships among them. A dynamic weighting mechanism is used to update the experts’ weights based on their contributions to group consensus, which better reflects the actual situation than fixed weights. The proposed method is exemplified through a case study of assessing and selecting campus surveillance measures for COVID-19. Finally, the effectiveness and robustness of the proposed framework are verified through comparative analysis and sensitivity analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistic linguistic preference relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consensus reaching process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale group decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-granular probabilistic linguistic information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized individual semantics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Youlong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3706-1312</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Liqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">230</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">230</subfield></datafield></record></collection>
|
score |
7.400672 |