Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity
A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-...
Ausführliche Beschreibung
Autor*in: |
Sharma, Shubham [verfasserIn] Mehtab, Sameena [verfasserIn] Zaidi, M.G.H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials chemistry and physics - New York, NY [u.a.] : Elsevier, 1983, 296 |
---|---|
Übergeordnetes Werk: |
volume:296 |
DOI / URN: |
10.1016/j.matchemphys.2022.127278 |
---|
Katalog-ID: |
ELV01054402X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV01054402X | ||
003 | DE-627 | ||
005 | 20230927132708.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230618s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matchemphys.2022.127278 |2 doi | |
035 | |a (DE-627)ELV01054402X | ||
035 | |a (ELSEVIER)S0254-0584(22)01584-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q VZ |
084 | |a ASIEN |q DE-1a |2 fid | ||
084 | |a 6,25 |2 ssgn | ||
084 | |a 35.90 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Sharma, Shubham |e verfasserin |4 aut | |
245 | 1 | 0 | |a Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. | ||
650 | 4 | |a Supercritical processing | |
650 | 4 | |a Multiwalled carbon nanotube | |
650 | 4 | |a Boron nitride | |
650 | 4 | |a Nanohybrids | |
650 | 4 | |a Electrical conductivity | |
650 | 4 | |a Thermal stability | |
700 | 1 | |a Mehtab, Sameena |e verfasserin |0 (orcid)0000-0002-8110-4770 |4 aut | |
700 | 1 | |a Zaidi, M.G.H. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials chemistry and physics |d New York, NY [u.a.] : Elsevier, 1983 |g 296 |h Online-Ressource |w (DE-627)302719350 |w (DE-600)1491959-X |w (DE-576)096806435 |7 nnns |
773 | 1 | 8 | |g volume:296 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-ASIEN | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 296 |
author_variant |
s s ss s m sm m z mz |
---|---|
matchkey_str |
sharmashubhammehtabsameenazaidimgh:2022----:ueciiapoesnotemlytbeutwlecronntbbrnirdnnhbisihyegsi |
hierarchy_sort_str |
2022 |
bklnumber |
35.90 33.61 51.00 |
publishDate |
2022 |
allfields |
10.1016/j.matchemphys.2022.127278 doi (DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sharma, Shubham verfasserin aut Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability Mehtab, Sameena verfasserin (orcid)0000-0002-8110-4770 aut Zaidi, M.G.H. verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 296 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:296 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 296 |
spelling |
10.1016/j.matchemphys.2022.127278 doi (DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sharma, Shubham verfasserin aut Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability Mehtab, Sameena verfasserin (orcid)0000-0002-8110-4770 aut Zaidi, M.G.H. verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 296 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:296 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 296 |
allfields_unstemmed |
10.1016/j.matchemphys.2022.127278 doi (DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sharma, Shubham verfasserin aut Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability Mehtab, Sameena verfasserin (orcid)0000-0002-8110-4770 aut Zaidi, M.G.H. verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 296 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:296 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 296 |
allfieldsGer |
10.1016/j.matchemphys.2022.127278 doi (DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sharma, Shubham verfasserin aut Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability Mehtab, Sameena verfasserin (orcid)0000-0002-8110-4770 aut Zaidi, M.G.H. verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 296 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:296 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 296 |
allfieldsSound |
10.1016/j.matchemphys.2022.127278 doi (DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sharma, Shubham verfasserin aut Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability Mehtab, Sameena verfasserin (orcid)0000-0002-8110-4770 aut Zaidi, M.G.H. verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 296 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:296 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 296 |
language |
English |
source |
Enthalten in Materials chemistry and physics 296 volume:296 |
sourceStr |
Enthalten in Materials chemistry and physics 296 volume:296 |
format_phy_str_mv |
Article |
bklname |
Festkörperchemie Festkörperphysik Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Materials chemistry and physics |
authorswithroles_txt_mv |
Sharma, Shubham @@aut@@ Mehtab, Sameena @@aut@@ Zaidi, M.G.H. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
302719350 |
dewey-sort |
3540 |
id |
ELV01054402X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01054402X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927132708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230618s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2022.127278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01054402X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(22)01584-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharma, Shubham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiwalled carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boron nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanohybrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal stability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehtab, Sameena</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8110-4770</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaidi, M.G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials chemistry and physics</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">296</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719350</subfield><subfield code="w">(DE-600)1491959-X</subfield><subfield code="w">(DE-576)096806435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:296</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">296</subfield></datafield></record></collection>
|
author |
Sharma, Shubham |
spellingShingle |
Sharma, Shubham ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Supercritical processing misc Multiwalled carbon nanotube misc Boron nitride misc Nanohybrids misc Electrical conductivity misc Thermal stability Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
authorStr |
Sharma, Shubham |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302719350 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity Supercritical processing Multiwalled carbon nanotube Boron nitride Nanohybrids Electrical conductivity Thermal stability |
topic |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Supercritical processing misc Multiwalled carbon nanotube misc Boron nitride misc Nanohybrids misc Electrical conductivity misc Thermal stability |
topic_unstemmed |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Supercritical processing misc Multiwalled carbon nanotube misc Boron nitride misc Nanohybrids misc Electrical conductivity misc Thermal stability |
topic_browse |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Supercritical processing misc Multiwalled carbon nanotube misc Boron nitride misc Nanohybrids misc Electrical conductivity misc Thermal stability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials chemistry and physics |
hierarchy_parent_id |
302719350 |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Materials chemistry and physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 |
title |
Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
ctrlnum |
(DE-627)ELV01054402X (ELSEVIER)S0254-0584(22)01584-X |
title_full |
Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
author_sort |
Sharma, Shubham |
journal |
Materials chemistry and physics |
journalStr |
Materials chemistry and physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Sharma, Shubham Mehtab, Sameena Zaidi, M.G.H. |
container_volume |
296 |
class |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sharma, Shubham |
doi_str_mv |
10.1016/j.matchemphys.2022.127278 |
normlink |
(ORCID)0000-0002-8110-4770 |
normlink_prefix_str_mv |
(orcid)0000-0002-8110-4770 |
dewey-full |
540 530 |
author2-role |
verfasserin |
title_sort |
supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
title_auth |
Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
abstract |
A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. |
abstractGer |
A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. |
abstract_unstemmed |
A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity |
remote_bool |
true |
author2 |
Mehtab, Sameena Zaidi, M.G.H. |
author2Str |
Mehtab, Sameena Zaidi, M.G.H. |
ppnlink |
302719350 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matchemphys.2022.127278 |
up_date |
2024-07-06T18:21:54.715Z |
_version_ |
1803854927329492992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01054402X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927132708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230618s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2022.127278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01054402X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(22)01584-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharma, Shubham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supercritical processing of thermally stable multiwalled carbon nanotube/boron nitride nanohybrids with synergistically improved electrical conductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel method of processing of thermally stable nanohybrids (NHs) with synergistically improved electrical conductivity (σDC) has been developed in supercritical carbon dioxide (SCC). Processing of NHs was executed through dispersion of selected weight fractions (wt%) of hexagonal boron nitride (h-BN) into carboxylate functional multiwalled carbon nanotube (c-MWCNT) at 1200 psi, 90 ± 1°C over 5 hr in SCC. Formation of NHs was ascertained through diverse analytical methods. Scanning electron microscopy coupled with energy dispersive spectra, elemental mapping and X-ray diffraction analysis reveals deposition of h-BN over the surface of c-MWCNT. NHs derived at 5 wt% of h-BN has shown reduced optical band gap (Eg, 3.34 eV) with 41 % increase in crystallite size. Working electrodes (WEs) derived from NHs has rendered increasing trend of DC conductivity (mS/cm) with concentration of h-BN up to 5 wt% at 100 V. WEs involving h-BN (5 wt%) has shown enhanced DC conductivity (0.93) followed by c-MWCNT (0.63) and h-BN (0.41) at 100 V. Present investigation delivers a clean, dry and environmentally benign method of processing of NHs suitable for development of inexpensive WEs for potential applications in hydrogen storage, electrocatalysis and sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiwalled carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boron nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanohybrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal stability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehtab, Sameena</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8110-4770</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaidi, M.G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials chemistry and physics</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">296</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719350</subfield><subfield code="w">(DE-600)1491959-X</subfield><subfield code="w">(DE-576)096806435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:296</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">296</subfield></datafield></record></collection>
|
score |
7.401849 |