Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression
In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale ca...
Ausführliche Beschreibung
Autor*in: |
Smit, I.E. [verfasserIn] Van Zijl, G.M. [verfasserIn] Riddell, E.S. [verfasserIn] Van Tol, J.J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geoderma - Amsterdam [u.a.] : Elsevier Science, 1967, 436 |
---|---|
Übergeordnetes Werk: |
volume:436 |
DOI / URN: |
10.1016/j.geoderma.2023.116568 |
---|
Katalog-ID: |
ELV010564977 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV010564977 | ||
003 | DE-627 | ||
005 | 20230620073008.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230620s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.geoderma.2023.116568 |2 doi | |
035 | |a (DE-627)ELV010564977 | ||
035 | |a (ELSEVIER)S0016-7061(23)00245-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 910 |q VZ |
084 | |a 38.60 |2 bkl | ||
100 | 1 | |a Smit, I.E. |e verfasserin |0 (orcid)0000-0003-1513-4493 |4 aut | |
245 | 1 | 0 | |a Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. | ||
650 | 4 | |a Hydropedology | |
650 | 4 | |a K-means clustering | |
650 | 4 | |a Digital soil mapping | |
650 | 4 | |a SMOTE | |
700 | 1 | |a Van Zijl, G.M. |e verfasserin |4 aut | |
700 | 1 | |a Riddell, E.S. |e verfasserin |4 aut | |
700 | 1 | |a Van Tol, J.J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geoderma |d Amsterdam [u.a.] : Elsevier Science, 1967 |g 436 |h Online-Ressource |w (DE-627)320414493 |w (DE-600)2001729-7 |w (DE-576)099603853 |x 1872-6259 |7 nnns |
773 | 1 | 8 | |g volume:436 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.60 |j Bodenkunde: Allgemeines |x Geowissenschaften |q VZ |
951 | |a AR | ||
952 | |d 436 |
author_variant |
i s is z g v zg zgv e r er t j v tj tjv |
---|---|
matchkey_str |
article:18726259:2023----::onclnlgcsiifrainohdooiasimpigsnmli |
hierarchy_sort_str |
2023 |
bklnumber |
38.60 |
publishDate |
2023 |
allfields |
10.1016/j.geoderma.2023.116568 doi (DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Smit, I.E. verfasserin (orcid)0000-0003-1513-4493 aut Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. Hydropedology K-means clustering Digital soil mapping SMOTE Van Zijl, G.M. verfasserin aut Riddell, E.S. verfasserin aut Van Tol, J.J. verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 436 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:436 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 436 |
spelling |
10.1016/j.geoderma.2023.116568 doi (DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Smit, I.E. verfasserin (orcid)0000-0003-1513-4493 aut Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. Hydropedology K-means clustering Digital soil mapping SMOTE Van Zijl, G.M. verfasserin aut Riddell, E.S. verfasserin aut Van Tol, J.J. verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 436 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:436 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 436 |
allfields_unstemmed |
10.1016/j.geoderma.2023.116568 doi (DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Smit, I.E. verfasserin (orcid)0000-0003-1513-4493 aut Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. Hydropedology K-means clustering Digital soil mapping SMOTE Van Zijl, G.M. verfasserin aut Riddell, E.S. verfasserin aut Van Tol, J.J. verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 436 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:436 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 436 |
allfieldsGer |
10.1016/j.geoderma.2023.116568 doi (DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Smit, I.E. verfasserin (orcid)0000-0003-1513-4493 aut Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. Hydropedology K-means clustering Digital soil mapping SMOTE Van Zijl, G.M. verfasserin aut Riddell, E.S. verfasserin aut Van Tol, J.J. verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 436 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:436 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 436 |
allfieldsSound |
10.1016/j.geoderma.2023.116568 doi (DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Smit, I.E. verfasserin (orcid)0000-0003-1513-4493 aut Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. Hydropedology K-means clustering Digital soil mapping SMOTE Van Zijl, G.M. verfasserin aut Riddell, E.S. verfasserin aut Van Tol, J.J. verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 436 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:436 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 436 |
language |
English |
source |
Enthalten in Geoderma 436 volume:436 |
sourceStr |
Enthalten in Geoderma 436 volume:436 |
format_phy_str_mv |
Article |
bklname |
Bodenkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Hydropedology K-means clustering Digital soil mapping SMOTE |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geoderma |
authorswithroles_txt_mv |
Smit, I.E. @@aut@@ Van Zijl, G.M. @@aut@@ Riddell, E.S. @@aut@@ Van Tol, J.J. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320414493 |
dewey-sort |
3550 |
id |
ELV010564977 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010564977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230620073008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230620s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2023.116568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010564977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(23)00245-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smit, I.E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1513-4493</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydropedology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital soil mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SMOTE</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Zijl, G.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riddell, E.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Tol, J.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">436</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:436</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">436</subfield></datafield></record></collection>
|
author |
Smit, I.E. |
spellingShingle |
Smit, I.E. ddc 550 bkl 38.60 misc Hydropedology misc K-means clustering misc Digital soil mapping misc SMOTE Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
authorStr |
Smit, I.E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320414493 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 910 - Geography & travel |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-6259 |
topic_title |
550 910 VZ 38.60 bkl Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression Hydropedology K-means clustering Digital soil mapping SMOTE |
topic |
ddc 550 bkl 38.60 misc Hydropedology misc K-means clustering misc Digital soil mapping misc SMOTE |
topic_unstemmed |
ddc 550 bkl 38.60 misc Hydropedology misc K-means clustering misc Digital soil mapping misc SMOTE |
topic_browse |
ddc 550 bkl 38.60 misc Hydropedology misc K-means clustering misc Digital soil mapping misc SMOTE |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geoderma |
hierarchy_parent_id |
320414493 |
dewey-tens |
550 - Earth sciences & geology 910 - Geography & travel |
hierarchy_top_title |
Geoderma |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 |
title |
Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
ctrlnum |
(DE-627)ELV010564977 (ELSEVIER)S0016-7061(23)00245-8 |
title_full |
Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
author_sort |
Smit, I.E. |
journal |
Geoderma |
journalStr |
Geoderma |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 900 - History & geography |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Smit, I.E. Van Zijl, G.M. Riddell, E.S. Van Tol, J.J. |
container_volume |
436 |
class |
550 910 VZ 38.60 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Smit, I.E. |
doi_str_mv |
10.1016/j.geoderma.2023.116568 |
normlink |
(ORCID)0000-0003-1513-4493 |
normlink_prefix_str_mv |
(orcid)0000-0003-1513-4493 |
dewey-full |
550 910 |
author2-role |
verfasserin |
title_sort |
downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
title_auth |
Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
abstract |
In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. |
abstractGer |
In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. |
abstract_unstemmed |
In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression |
remote_bool |
true |
author2 |
Van Zijl, G.M. Riddell, E.S. Van Tol, J.J. |
author2Str |
Van Zijl, G.M. Riddell, E.S. Van Tol, J.J. |
ppnlink |
320414493 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.geoderma.2023.116568 |
up_date |
2024-07-06T18:26:19.969Z |
_version_ |
1803855205468471296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV010564977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230620073008.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230620s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2023.116568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV010564977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(23)00245-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smit, I.E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1513-4493</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In South Africa, there is a growing demand for large scale detailed hydrological soil maps for modelling and management purposes. However, imbalanced legacy soil information often impedes the accurate creation of such maps by not being representative of the environmental complexity of large-scale catchments and containing imbalanced soil class distributions, often resulting in the loss of minority soil classes, which are often of great hydrological importance (e.g., wetland and riparian soils). In this study, we proposed a new downscaling approach to handle spatially localised legacy soil data within a larger low resolution legacy soil dataset to create an accurate hydrological soil map of the macro-scale (5790 km2) Sabie-Sand catchment using multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and their mapping accuracy using confusion matrix’s and Kappa coefficient statistics. However, MNLR also requires balanced soil classes. The value of the best performing legacy soil dataset was also compared to using all available soil information after both had their soil class distributions fully balanced using Synthetic Minority Oversampling Technique (SMOTE). The 500 ha/observation-SMOTE dataset resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE balanced dataset using all available soil information. This was due to the decreased variation between observations and catchment means, where the 500 ha/observation dataset yielded the least variation between soil observation and catchment datasets and well as reducing the class imbalance within the legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an effective tool to improve digital soil mapping accuracy using MNLR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydropedology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital soil mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SMOTE</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Zijl, G.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riddell, E.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Tol, J.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">436</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:436</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">436</subfield></datafield></record></collection>
|
score |
7.402439 |