Analog cavity simulator
Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the...
Ausführliche Beschreibung
Autor*in: |
Orel, Peter [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:729 ; year:2013 ; day:21 ; month:11 ; pages:241-246 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2013.06.059 |
---|
Katalog-ID: |
ELV01148442X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV01148442X | ||
003 | DE-627 | ||
005 | 20230625105855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2013.06.059 |2 doi | |
028 | 5 | 2 | |a GBVA2013006000025.pica |
035 | |a (DE-627)ELV01148442X | ||
035 | |a (ELSEVIER)S0168-9002(13)00892-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Orel, Peter |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analog cavity simulator |
264 | 1 | |c 2013transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. | ||
520 | |a Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. | ||
650 | 7 | |a Accelerator cavity |2 Elsevier | |
650 | 7 | |a Quality factor |2 Elsevier | |
650 | 7 | |a LLRF |2 Elsevier | |
650 | 7 | |a IQ modulator |2 Elsevier | |
650 | 7 | |a Accelerator technology |2 Elsevier | |
650 | 7 | |a Cavity simulator |2 Elsevier | |
700 | 1 | |a Mavrič, Uroš |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:729 |g year:2013 |g day:21 |g month:11 |g pages:241-246 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2013.06.059 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 729 |j 2013 |b 21 |c 1121 |h 241-246 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
p o po |
---|---|
matchkey_str |
orelpetermavriuro:2013----:nlgaiyi |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
44.90 |
publishDate |
2013 |
allfields |
10.1016/j.nima.2013.06.059 doi GBVA2013006000025.pica (DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Orel, Peter verfasserin aut Analog cavity simulator 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier Mavrič, Uroš oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 https://doi.org/10.1016/j.nima.2013.06.059 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 729 2013 21 1121 241-246 6 045F 530 |
spelling |
10.1016/j.nima.2013.06.059 doi GBVA2013006000025.pica (DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Orel, Peter verfasserin aut Analog cavity simulator 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier Mavrič, Uroš oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 https://doi.org/10.1016/j.nima.2013.06.059 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 729 2013 21 1121 241-246 6 045F 530 |
allfields_unstemmed |
10.1016/j.nima.2013.06.059 doi GBVA2013006000025.pica (DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Orel, Peter verfasserin aut Analog cavity simulator 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier Mavrič, Uroš oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 https://doi.org/10.1016/j.nima.2013.06.059 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 729 2013 21 1121 241-246 6 045F 530 |
allfieldsGer |
10.1016/j.nima.2013.06.059 doi GBVA2013006000025.pica (DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Orel, Peter verfasserin aut Analog cavity simulator 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier Mavrič, Uroš oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 https://doi.org/10.1016/j.nima.2013.06.059 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 729 2013 21 1121 241-246 6 045F 530 |
allfieldsSound |
10.1016/j.nima.2013.06.059 doi GBVA2013006000025.pica (DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 DE-627 ger DE-627 rakwb eng 530 530 DE-600 610 VZ 44.90 bkl Orel, Peter verfasserin aut Analog cavity simulator 2013transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier Mavrič, Uroš oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 https://doi.org/10.1016/j.nima.2013.06.059 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 729 2013 21 1121 241-246 6 045F 530 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:729 year:2013 day:21 month:11 pages:241-246 extent:6 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Accelerator cavity Quality factor LLRF IQ modulator Accelerator technology Cavity simulator |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Orel, Peter @@aut@@ Mavrič, Uroš @@oth@@ |
publishDateDaySort_date |
2013-01-21T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3530 |
id |
ELV01148442X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01148442X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625105855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2013.06.059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013006000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01148442X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(13)00892-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orel, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analog cavity simulator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accelerator cavity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quality factor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LLRF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IQ modulator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accelerator technology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cavity simulator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mavrič, Uroš</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:729</subfield><subfield code="g">year:2013</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:241-246</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2013.06.059</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">729</subfield><subfield code="j">2013</subfield><subfield code="b">21</subfield><subfield code="c">1121</subfield><subfield code="h">241-246</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Orel, Peter |
spellingShingle |
Orel, Peter ddc 530 ddc 610 bkl 44.90 Elsevier Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Analog cavity simulator |
authorStr |
Orel, Peter |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
530 - Physics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 610 VZ 44.90 bkl Analog cavity simulator Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator Elsevier |
topic |
ddc 530 ddc 610 bkl 44.90 Elsevier Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator |
topic_unstemmed |
ddc 530 ddc 610 bkl 44.90 Elsevier Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator |
topic_browse |
ddc 530 ddc 610 bkl 44.90 Elsevier Accelerator cavity Elsevier Quality factor Elsevier LLRF Elsevier IQ modulator Elsevier Accelerator technology Elsevier Cavity simulator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
u m um |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
530 - Physics 610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
Analog cavity simulator |
ctrlnum |
(DE-627)ELV01148442X (ELSEVIER)S0168-9002(13)00892-9 |
title_full |
Analog cavity simulator |
author_sort |
Orel, Peter |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
241 |
author_browse |
Orel, Peter |
container_volume |
729 |
physical |
6 |
class |
530 530 DE-600 610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Orel, Peter |
doi_str_mv |
10.1016/j.nima.2013.06.059 |
dewey-full |
530 610 |
title_sort |
analog cavity simulator |
title_auth |
Analog cavity simulator |
abstract |
Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. |
abstractGer |
Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. |
abstract_unstemmed |
Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Analog cavity simulator |
url |
https://doi.org/10.1016/j.nima.2013.06.059 |
remote_bool |
true |
author2 |
Mavrič, Uroš |
author2Str |
Mavrič, Uroš |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.nima.2013.06.059 |
up_date |
2024-07-06T20:06:26.650Z |
_version_ |
1803861503927910400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01148442X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625105855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2013.06.059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013006000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01148442X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(13)00892-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orel, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analog cavity simulator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of the low-level radio frequency (LLRF) systems are being developed well before the machines are being set up and ready to be commissioned. Therefore it is imperative to be able to test and evaluate their functionality and performance in the laboratory, before the instrument is installed in the final configuration. Real accelerator cavities are very expensive and frequency-dependent, hence impractical for mass factory testing of instrumentation. As an alternative, we developed an analog cavity simulator. The article gives an explanation of the main design concept, some key considerations of its implementation in order to reach the required specifications, and presents the test results, showing the simulator performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accelerator cavity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quality factor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LLRF</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IQ modulator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Accelerator technology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cavity simulator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mavrič, Uroš</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:729</subfield><subfield code="g">year:2013</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:241-246</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2013.06.059</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">729</subfield><subfield code="j">2013</subfield><subfield code="b">21</subfield><subfield code="c">1121</subfield><subfield code="h">241-246</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402356 |