Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity
• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velo...
Ausführliche Beschreibung
Autor*in: |
Angelotti, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC - Yang, Jin ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2014 ; pages:700-708 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.enconman.2013.10.018 |
---|
Katalog-ID: |
ELV012197807 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012197807 | ||
003 | DE-627 | ||
005 | 20230623094811.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enconman.2013.10.018 |2 doi | |
028 | 5 | 2 | |a GBVA2014007000025.pica |
035 | |a (DE-627)ELV012197807 | ||
035 | |a (ELSEVIER)S0196-8904(13)00653-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Angelotti, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
264 | 1 | |c 2014 | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. | ||
650 | 7 | |a Groundwater flow |2 Elsevier | |
650 | 7 | |a Thermal impact |2 Elsevier | |
650 | 7 | |a Numerical methods |2 Elsevier | |
650 | 7 | |a Ground-Source Heat Pump |2 Elsevier | |
650 | 7 | |a Energy performance |2 Elsevier | |
650 | 7 | |a Borehole Heat Exchanger |2 Elsevier | |
700 | 1 | |a Alberti, L. |4 oth | |
700 | 1 | |a La Licata, I. |4 oth | |
700 | 1 | |a Antelmi, M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Yang, Jin ELSEVIER |t Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV001598317 |
773 | 1 | 8 | |g volume:77 |g year:2014 |g pages:700-708 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.enconman.2013.10.018 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 77 |j 2014 |h 700-708 |g 9 | ||
953 | |2 045F |a 620 |
author_variant |
a a aa |
---|---|
matchkey_str |
angelottiaalbertillalicataiantelmim:2014----:nryefracadhraipcoaoeoeetxhneiaadaufrnle |
hierarchy_sort_str |
2014 |
bklnumber |
35.00 |
publishDate |
2014 |
allfields |
10.1016/j.enconman.2013.10.018 doi GBVA2014007000025.pica (DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 DE-627 ger DE-627 rakwb eng 620 620 DE-600 540 VZ 35.00 bkl Angelotti, A. verfasserin aut Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity 2014 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier Alberti, L. oth La Licata, I. oth Antelmi, M. oth Enthalten in Elsevier Science Yang, Jin ELSEVIER Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC 2019 Amsterdam [u.a.] (DE-627)ELV001598317 volume:77 year:2014 pages:700-708 extent:9 https://doi.org/10.1016/j.enconman.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ AR 77 2014 700-708 9 045F 620 |
spelling |
10.1016/j.enconman.2013.10.018 doi GBVA2014007000025.pica (DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 DE-627 ger DE-627 rakwb eng 620 620 DE-600 540 VZ 35.00 bkl Angelotti, A. verfasserin aut Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity 2014 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier Alberti, L. oth La Licata, I. oth Antelmi, M. oth Enthalten in Elsevier Science Yang, Jin ELSEVIER Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC 2019 Amsterdam [u.a.] (DE-627)ELV001598317 volume:77 year:2014 pages:700-708 extent:9 https://doi.org/10.1016/j.enconman.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ AR 77 2014 700-708 9 045F 620 |
allfields_unstemmed |
10.1016/j.enconman.2013.10.018 doi GBVA2014007000025.pica (DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 DE-627 ger DE-627 rakwb eng 620 620 DE-600 540 VZ 35.00 bkl Angelotti, A. verfasserin aut Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity 2014 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier Alberti, L. oth La Licata, I. oth Antelmi, M. oth Enthalten in Elsevier Science Yang, Jin ELSEVIER Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC 2019 Amsterdam [u.a.] (DE-627)ELV001598317 volume:77 year:2014 pages:700-708 extent:9 https://doi.org/10.1016/j.enconman.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ AR 77 2014 700-708 9 045F 620 |
allfieldsGer |
10.1016/j.enconman.2013.10.018 doi GBVA2014007000025.pica (DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 DE-627 ger DE-627 rakwb eng 620 620 DE-600 540 VZ 35.00 bkl Angelotti, A. verfasserin aut Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity 2014 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier Alberti, L. oth La Licata, I. oth Antelmi, M. oth Enthalten in Elsevier Science Yang, Jin ELSEVIER Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC 2019 Amsterdam [u.a.] (DE-627)ELV001598317 volume:77 year:2014 pages:700-708 extent:9 https://doi.org/10.1016/j.enconman.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ AR 77 2014 700-708 9 045F 620 |
allfieldsSound |
10.1016/j.enconman.2013.10.018 doi GBVA2014007000025.pica (DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 DE-627 ger DE-627 rakwb eng 620 620 DE-600 540 VZ 35.00 bkl Angelotti, A. verfasserin aut Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity 2014 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier Alberti, L. oth La Licata, I. oth Antelmi, M. oth Enthalten in Elsevier Science Yang, Jin ELSEVIER Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC 2019 Amsterdam [u.a.] (DE-627)ELV001598317 volume:77 year:2014 pages:700-708 extent:9 https://doi.org/10.1016/j.enconman.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.00 Chemie: Allgemeines VZ AR 77 2014 700-708 9 045F 620 |
language |
English |
source |
Enthalten in Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC Amsterdam [u.a.] volume:77 year:2014 pages:700-708 extent:9 |
sourceStr |
Enthalten in Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC Amsterdam [u.a.] volume:77 year:2014 pages:700-708 extent:9 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Groundwater flow Thermal impact Numerical methods Ground-Source Heat Pump Energy performance Borehole Heat Exchanger |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |
authorswithroles_txt_mv |
Angelotti, A. @@aut@@ Alberti, L. @@oth@@ La Licata, I. @@oth@@ Antelmi, M. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV001598317 |
dewey-sort |
3620 |
id |
ELV012197807 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012197807</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623094811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2013.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014007000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012197807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(13)00653-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angelotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groundwater flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal impact</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ground-Source Heat Pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Borehole Heat Exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alberti, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La Licata, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antelmi, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Yang, Jin ELSEVIER</subfield><subfield code="t">Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001598317</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:700-708</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enconman.2013.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2014</subfield><subfield code="h">700-708</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Angelotti, A. |
spellingShingle |
Angelotti, A. ddc 620 ddc 540 bkl 35.00 Elsevier Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
authorStr |
Angelotti, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001598317 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 540 VZ 35.00 bkl Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger Elsevier |
topic |
ddc 620 ddc 540 bkl 35.00 Elsevier Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger |
topic_unstemmed |
ddc 620 ddc 540 bkl 35.00 Elsevier Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger |
topic_browse |
ddc 620 ddc 540 bkl 35.00 Elsevier Groundwater flow Elsevier Thermal impact Elsevier Numerical methods Elsevier Ground-Source Heat Pump Elsevier Energy performance Elsevier Borehole Heat Exchanger |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l a la l i l li lil m a ma |
hierarchy_parent_title |
Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |
hierarchy_parent_id |
ELV001598317 |
dewey-tens |
620 - Engineering 540 - Chemistry |
hierarchy_top_title |
Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001598317 |
title |
Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
ctrlnum |
(DE-627)ELV012197807 (ELSEVIER)S0196-8904(13)00653-5 |
title_full |
Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
author_sort |
Angelotti, A. |
journal |
Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |
journalStr |
Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
700 |
author_browse |
Angelotti, A. |
container_volume |
77 |
physical |
9 |
class |
620 620 DE-600 540 VZ 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Angelotti, A. |
doi_str_mv |
10.1016/j.enconman.2013.10.018 |
dewey-full |
620 540 |
title_sort |
energy performance and thermal impact of a borehole heat exchanger in a sandy aquifer: influence of the groundwater velocity |
title_auth |
Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
abstract |
• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. |
abstractGer |
• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. |
abstract_unstemmed |
• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity |
url |
https://doi.org/10.1016/j.enconman.2013.10.018 |
remote_bool |
true |
author2 |
Alberti, L. La Licata, I. Antelmi, M. |
author2Str |
Alberti, L. La Licata, I. Antelmi, M. |
ppnlink |
ELV001598317 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.enconman.2013.10.018 |
up_date |
2024-07-06T21:43:14.894Z |
_version_ |
1803867594314219520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012197807</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623094811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enconman.2013.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014007000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012197807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8904(13)00653-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angelotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10−1 ⩽Pe⩽1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groundwater flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal impact</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ground-Source Heat Pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Borehole Heat Exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alberti, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La Licata, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antelmi, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Yang, Jin ELSEVIER</subfield><subfield code="t">Preparation and catalytic properties of the triphenylarsine and triphenylstibine-stabilized tri-heteroleptic NHC</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001598317</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2014</subfield><subfield code="g">pages:700-708</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enconman.2013.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2014</subfield><subfield code="h">700-708</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.402647 |