The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method
The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), trans...
Ausführliche Beschreibung
Autor*in: |
Chi, Mingfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2014 ; number:6 ; pages:8921-8924 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2014.01.046 |
---|
Katalog-ID: |
ELV012213853 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012213853 | ||
003 | DE-627 | ||
005 | 20230625110523.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2014.01.046 |2 doi | |
028 | 5 | 2 | |a GBVA2014008000013.pica |
035 | |a (DE-627)ELV012213853 | ||
035 | |a (ELSEVIER)S0272-8842(14)00072-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 670 | |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Chi, Mingfeng |e verfasserin |4 aut | |
245 | 1 | 4 | |a The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
264 | 1 | |c 2014transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. | ||
520 | |a The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. | ||
650 | 7 | |a Borides |2 Elsevier | |
650 | 7 | |a Electron microscopy |2 Elsevier | |
700 | 1 | |a Zhao, Yanming |4 oth | |
700 | 1 | |a Fan, Qinghua |4 oth | |
700 | 1 | |a Han, Wei |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:40 |g year:2014 |g number:6 |g pages:8921-8924 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2014.01.046 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 40 |j 2014 |e 6 |h 8921-8924 |g 4 | ||
953 | |2 045F |a 670 |
author_variant |
m c mc |
---|---|
matchkey_str |
chimingfengzhaoyanmingfanqinghuahanwei:2014----:hsnhssfr6aoieadaouebte |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2014 |
allfields |
10.1016/j.ceramint.2014.01.046 doi GBVA2014008000013.pica (DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Chi, Mingfeng verfasserin aut The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. Borides Elsevier Electron microscopy Elsevier Zhao, Yanming oth Fan, Qinghua oth Han, Wei oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:40 year:2014 number:6 pages:8921-8924 extent:4 https://doi.org/10.1016/j.ceramint.2014.01.046 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 40 2014 6 8921-8924 4 045F 670 |
spelling |
10.1016/j.ceramint.2014.01.046 doi GBVA2014008000013.pica (DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Chi, Mingfeng verfasserin aut The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. Borides Elsevier Electron microscopy Elsevier Zhao, Yanming oth Fan, Qinghua oth Han, Wei oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:40 year:2014 number:6 pages:8921-8924 extent:4 https://doi.org/10.1016/j.ceramint.2014.01.046 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 40 2014 6 8921-8924 4 045F 670 |
allfields_unstemmed |
10.1016/j.ceramint.2014.01.046 doi GBVA2014008000013.pica (DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Chi, Mingfeng verfasserin aut The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. Borides Elsevier Electron microscopy Elsevier Zhao, Yanming oth Fan, Qinghua oth Han, Wei oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:40 year:2014 number:6 pages:8921-8924 extent:4 https://doi.org/10.1016/j.ceramint.2014.01.046 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 40 2014 6 8921-8924 4 045F 670 |
allfieldsGer |
10.1016/j.ceramint.2014.01.046 doi GBVA2014008000013.pica (DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Chi, Mingfeng verfasserin aut The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. Borides Elsevier Electron microscopy Elsevier Zhao, Yanming oth Fan, Qinghua oth Han, Wei oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:40 year:2014 number:6 pages:8921-8924 extent:4 https://doi.org/10.1016/j.ceramint.2014.01.046 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 40 2014 6 8921-8924 4 045F 670 |
allfieldsSound |
10.1016/j.ceramint.2014.01.046 doi GBVA2014008000013.pica (DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Chi, Mingfeng verfasserin aut The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method 2014transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. Borides Elsevier Electron microscopy Elsevier Zhao, Yanming oth Fan, Qinghua oth Han, Wei oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:40 year:2014 number:6 pages:8921-8924 extent:4 https://doi.org/10.1016/j.ceramint.2014.01.046 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 40 2014 6 8921-8924 4 045F 670 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:40 year:2014 number:6 pages:8921-8924 extent:4 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:40 year:2014 number:6 pages:8921-8924 extent:4 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Borides Electron microscopy |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Chi, Mingfeng @@aut@@ Zhao, Yanming @@oth@@ Fan, Qinghua @@oth@@ Han, Wei @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3670 |
id |
ELV012213853 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012213853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2014.01.046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014008000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012213853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(14)00072-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chi, Mingfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Borides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron microscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qinghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:8921-8924</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2014.01.046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="h">8921-8924</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
author |
Chi, Mingfeng |
spellingShingle |
Chi, Mingfeng ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Borides Elsevier Electron microscopy The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
authorStr |
Chi, Mingfeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method Borides Elsevier Electron microscopy Elsevier |
topic |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Borides Elsevier Electron microscopy |
topic_unstemmed |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Borides Elsevier Electron microscopy |
topic_browse |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Borides Elsevier Electron microscopy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y z yz q f qf w h wh |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
670 - Manufacturing 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
ctrlnum |
(DE-627)ELV012213853 (ELSEVIER)S0272-8842(14)00072-8 |
title_full |
The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
author_sort |
Chi, Mingfeng |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
8921 |
author_browse |
Chi, Mingfeng |
container_volume |
40 |
physical |
4 |
class |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chi, Mingfeng |
doi_str_mv |
10.1016/j.ceramint.2014.01.046 |
dewey-full |
670 333.7 610 |
title_sort |
synthesis of prb6 nanowires and nanotubes by the self-catalyzed method |
title_auth |
The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
abstract |
The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. |
abstractGer |
The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. |
abstract_unstemmed |
The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
6 |
title_short |
The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method |
url |
https://doi.org/10.1016/j.ceramint.2014.01.046 |
remote_bool |
true |
author2 |
Zhao, Yanming Fan, Qinghua Han, Wei |
author2Str |
Zhao, Yanming Fan, Qinghua Han, Wei |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.ceramint.2014.01.046 |
up_date |
2024-07-06T21:46:16.160Z |
_version_ |
1803867784385396736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012213853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2014.01.046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014008000013.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012213853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(14)00072-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chi, Mingfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The praseodymium hexaborides (PrB6) nanowires and amorphous PrB6 nanotubes were successfully fabricated through a catalyst-free chemical vapor deposition (CVD) process using Pr powders and BCl3 as starting materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were used to characterize the morphology, composition and structure of the samples. Our results showed that the as-synthesized nanowires were polycrystalline with 10–100nm in diameter and ~2–10μm in length. Furthermore, we also obtained PrB6 nanotubes for the first time in our experiment. HRTEM and SAED identified that the PrB6 nanotubes were amorphous in nature. A growth mechanism was proposed for the formation of the PrB6 nanostructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Borides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron microscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qinghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:8921-8924</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2014.01.046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="h">8921-8924</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
score |
7.402915 |