A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes
We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent e...
Ausführliche Beschreibung
Autor*in: |
Oh, Kyeongmin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2014 ; number:36 ; day:12 ; month:12 ; pages:21915-21926 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2014.06.101 |
---|
Katalog-ID: |
ELV012316555 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012316555 | ||
003 | DE-627 | ||
005 | 20230625110632.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2014.06.101 |2 doi | |
028 | 5 | 2 | |a GBVA2014011000026.pica |
035 | |a (DE-627)ELV012316555 | ||
035 | |a (ELSEVIER)S0360-3199(14)01780-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 |a 620 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Oh, Kyeongmin |e verfasserin |4 aut | |
245 | 1 | 0 | |a A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
264 | 1 | |c 2014transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. | ||
520 | |a We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. | ||
650 | 7 | |a Numerical modeling |2 Elsevier | |
650 | 7 | |a CO poisoning |2 Elsevier | |
650 | 7 | |a High-temperature proton exchange membrane fuel cell |2 Elsevier | |
650 | 7 | |a Polybenzimidazole (PBI) |2 Elsevier | |
700 | 1 | |a Jeong, Gisu |4 oth | |
700 | 1 | |a Cho, EunAe |4 oth | |
700 | 1 | |a Kim, Whangi |4 oth | |
700 | 1 | |a Ju, Hyunchul |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:39 |g year:2014 |g number:36 |g day:12 |g month:12 |g pages:21915-21926 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2014.06.101 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 39 |j 2014 |e 36 |b 12 |c 1212 |h 21915-21926 |g 12 | ||
953 | |2 045F |a 660 |
author_variant |
k o ko |
---|---|
matchkey_str |
ohkyeongminjeonggisuchoeunaekimwhangijuh:2014----:cpioigoefriheprtrpooecagmmrnfeclsopiighshrccd |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
44.94 |
publishDate |
2014 |
allfields |
10.1016/j.ijhydene.2014.06.101 doi GBVA2014011000026.pica (DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Oh, Kyeongmin verfasserin aut A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes 2014transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier Jeong, Gisu oth Cho, EunAe oth Kim, Whangi oth Ju, Hyunchul oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 https://doi.org/10.1016/j.ijhydene.2014.06.101 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 39 2014 36 12 1212 21915-21926 12 045F 660 |
spelling |
10.1016/j.ijhydene.2014.06.101 doi GBVA2014011000026.pica (DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Oh, Kyeongmin verfasserin aut A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes 2014transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier Jeong, Gisu oth Cho, EunAe oth Kim, Whangi oth Ju, Hyunchul oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 https://doi.org/10.1016/j.ijhydene.2014.06.101 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 39 2014 36 12 1212 21915-21926 12 045F 660 |
allfields_unstemmed |
10.1016/j.ijhydene.2014.06.101 doi GBVA2014011000026.pica (DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Oh, Kyeongmin verfasserin aut A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes 2014transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier Jeong, Gisu oth Cho, EunAe oth Kim, Whangi oth Ju, Hyunchul oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 https://doi.org/10.1016/j.ijhydene.2014.06.101 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 39 2014 36 12 1212 21915-21926 12 045F 660 |
allfieldsGer |
10.1016/j.ijhydene.2014.06.101 doi GBVA2014011000026.pica (DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Oh, Kyeongmin verfasserin aut A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes 2014transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier Jeong, Gisu oth Cho, EunAe oth Kim, Whangi oth Ju, Hyunchul oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 https://doi.org/10.1016/j.ijhydene.2014.06.101 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 39 2014 36 12 1212 21915-21926 12 045F 660 |
allfieldsSound |
10.1016/j.ijhydene.2014.06.101 doi GBVA2014011000026.pica (DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Oh, Kyeongmin verfasserin aut A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes 2014transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier Jeong, Gisu oth Cho, EunAe oth Kim, Whangi oth Ju, Hyunchul oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 https://doi.org/10.1016/j.ijhydene.2014.06.101 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 39 2014 36 12 1212 21915-21926 12 045F 660 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:39 year:2014 number:36 day:12 month:12 pages:21915-21926 extent:12 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Numerical modeling CO poisoning High-temperature proton exchange membrane fuel cell Polybenzimidazole (PBI) |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Oh, Kyeongmin @@aut@@ Jeong, Gisu @@oth@@ Cho, EunAe @@oth@@ Kim, Whangi @@oth@@ Ju, Hyunchul @@oth@@ |
publishDateDaySort_date |
2014-01-12T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3660 |
id |
ELV012316555 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012316555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2014.06.101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014011000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012316555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(14)01780-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oh, Kyeongmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CO poisoning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-temperature proton exchange membrane fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polybenzimidazole (PBI)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Gisu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cho, EunAe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Whangi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Hyunchul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:36</subfield><subfield code="g">day:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:21915-21926</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2014.06.101</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2014</subfield><subfield code="e">36</subfield><subfield code="b">12</subfield><subfield code="c">1212</subfield><subfield code="h">21915-21926</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Oh, Kyeongmin |
spellingShingle |
Oh, Kyeongmin ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
authorStr |
Oh, Kyeongmin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Numerical modeling Elsevier CO poisoning Elsevier High-temperature proton exchange membrane fuel cell Elsevier Polybenzimidazole (PBI) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g j gj e c ec w k wk h j hj |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
ctrlnum |
(DE-627)ELV012316555 (ELSEVIER)S0360-3199(14)01780-7 |
title_full |
A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
author_sort |
Oh, Kyeongmin |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
21915 |
author_browse |
Oh, Kyeongmin |
container_volume |
39 |
physical |
12 |
class |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Oh, Kyeongmin |
doi_str_mv |
10.1016/j.ijhydene.2014.06.101 |
dewey-full |
660 620 610 |
title_sort |
a co poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
title_auth |
A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
abstract |
We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. |
abstractGer |
We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. |
abstract_unstemmed |
We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
36 |
title_short |
A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes |
url |
https://doi.org/10.1016/j.ijhydene.2014.06.101 |
remote_bool |
true |
author2 |
Jeong, Gisu Cho, EunAe Kim, Whangi Ju, Hyunchul |
author2Str |
Jeong, Gisu Cho, EunAe Kim, Whangi Ju, Hyunchul |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2014.06.101 |
up_date |
2024-07-06T22:01:48.808Z |
_version_ |
1803868762337705984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012316555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2014.06.101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014011000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012316555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(14)01780-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oh, Kyeongmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present herein a carbon monoxide (CO) poisoning model for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) comprising phosphoric acid-doped polybenzimidazole membranes. In the model, the adsorption/desorption processes of CO and hydrogen on the anode Pt catalysts, and subsequent electrochemical oxidation are rigorously considered. The CO poisoning model is incorporated into a previously developed three-dimensional HT-PEMFC model, and then both numerical simulations and experimental measurements are conducted for a comparative study. The simulation results generally agree well with the experimental data under various current density conditions, highlighting that it is necessary to consider the variable hydrogen adsorption kinetics as a function of CO fractional coverage to achieve better agreement with the experimental data. Furthermore, detailed key contours for hydrogen/CO fractional coverage, anode overpotential, temperature, and current density are provided to derive greater insights into the CO poisoning mechanisms and characteristics in HT-PEMFCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CO poisoning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-temperature proton exchange membrane fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polybenzimidazole (PBI)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Gisu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cho, EunAe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Whangi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Hyunchul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:36</subfield><subfield code="g">day:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:21915-21926</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2014.06.101</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2014</subfield><subfield code="e">36</subfield><subfield code="b">12</subfield><subfield code="c">1212</subfield><subfield code="h">21915-21926</subfield><subfield code="g">12</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401309 |