Thermoecological cost of electricity production in the natural gas pressure reduction process
The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources...
Ausführliche Beschreibung
Autor*in: |
Kostowski, Wojciech J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion - Solanki, Nayan ELSEVIER, 2017, the international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2014 ; day:1 ; month:11 ; pages:10-18 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.energy.2014.01.045 |
---|
Katalog-ID: |
ELV012328391 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012328391 | ||
003 | DE-627 | ||
005 | 20230625110651.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2014.01.045 |2 doi | |
028 | 5 | 2 | |a GBV00000000000023.pica |
035 | |a (DE-627)ELV012328391 | ||
035 | |a (ELSEVIER)S0360-5442(14)00053-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 600 | |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Kostowski, Wojciech J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermoecological cost of electricity production in the natural gas pressure reduction process |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. | ||
520 | |a The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. | ||
650 | 7 | |a Thermoeconomics |2 Elsevier | |
650 | 7 | |a Exergy |2 Elsevier | |
650 | 7 | |a Thermoecological cost |2 Elsevier | |
650 | 7 | |a Natural gas |2 Elsevier | |
650 | 7 | |a Gas expanders |2 Elsevier | |
700 | 1 | |a Usón, Sergio |4 oth | |
700 | 1 | |a Stanek, Wojciech |4 oth | |
700 | 1 | |a Bargiel, Paweł |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Solanki, Nayan ELSEVIER |t Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |d 2017 |d the international journal |g Amsterdam [u.a.] |w (DE-627)ELV000529575 |
773 | 1 | 8 | |g volume:76 |g year:2014 |g day:1 |g month:11 |g pages:10-18 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.energy.2014.01.045 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 76 |j 2014 |b 1 |c 1101 |h 10-18 |g 9 | ||
953 | |2 045F |a 600 |
author_variant |
w j k wj wjk |
---|---|
matchkey_str |
kostowskiwojciechjusnsergiostanekwojciec:2014----:hroclgclotflcrctpoutoiteauagsr |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
44.40 |
publishDate |
2014 |
allfields |
10.1016/j.energy.2014.01.045 doi GBV00000000000023.pica (DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X DE-627 ger DE-627 rakwb eng 600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Kostowski, Wojciech J. verfasserin aut Thermoecological cost of electricity production in the natural gas pressure reduction process 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier Usón, Sergio oth Stanek, Wojciech oth Bargiel, Paweł oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 https://doi.org/10.1016/j.energy.2014.01.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 76 2014 1 1101 10-18 9 045F 600 |
spelling |
10.1016/j.energy.2014.01.045 doi GBV00000000000023.pica (DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X DE-627 ger DE-627 rakwb eng 600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Kostowski, Wojciech J. verfasserin aut Thermoecological cost of electricity production in the natural gas pressure reduction process 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier Usón, Sergio oth Stanek, Wojciech oth Bargiel, Paweł oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 https://doi.org/10.1016/j.energy.2014.01.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 76 2014 1 1101 10-18 9 045F 600 |
allfields_unstemmed |
10.1016/j.energy.2014.01.045 doi GBV00000000000023.pica (DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X DE-627 ger DE-627 rakwb eng 600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Kostowski, Wojciech J. verfasserin aut Thermoecological cost of electricity production in the natural gas pressure reduction process 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier Usón, Sergio oth Stanek, Wojciech oth Bargiel, Paweł oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 https://doi.org/10.1016/j.energy.2014.01.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 76 2014 1 1101 10-18 9 045F 600 |
allfieldsGer |
10.1016/j.energy.2014.01.045 doi GBV00000000000023.pica (DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X DE-627 ger DE-627 rakwb eng 600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Kostowski, Wojciech J. verfasserin aut Thermoecological cost of electricity production in the natural gas pressure reduction process 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier Usón, Sergio oth Stanek, Wojciech oth Bargiel, Paweł oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 https://doi.org/10.1016/j.energy.2014.01.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 76 2014 1 1101 10-18 9 045F 600 |
allfieldsSound |
10.1016/j.energy.2014.01.045 doi GBV00000000000023.pica (DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X DE-627 ger DE-627 rakwb eng 600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Kostowski, Wojciech J. verfasserin aut Thermoecological cost of electricity production in the natural gas pressure reduction process 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier Usón, Sergio oth Stanek, Wojciech oth Bargiel, Paweł oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 https://doi.org/10.1016/j.energy.2014.01.045 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 76 2014 1 1101 10-18 9 045F 600 |
language |
English |
source |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 |
sourceStr |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:76 year:2014 day:1 month:11 pages:10-18 extent:9 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Thermoeconomics Exergy Thermoecological cost Natural gas Gas expanders |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
authorswithroles_txt_mv |
Kostowski, Wojciech J. @@aut@@ Usón, Sergio @@oth@@ Stanek, Wojciech @@oth@@ Bargiel, Paweł @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV000529575 |
dewey-sort |
3600 |
id |
ELV012328391 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012328391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2014.01.045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000023.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012328391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(14)00053-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostowski, Wojciech J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermoecological cost of electricity production in the natural gas pressure reduction process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoeconomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exergy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoecological cost</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural gas</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas expanders</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usón, Sergio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bargiel, Paweł</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:10-18</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2014.01.045</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">10-18</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
author |
Kostowski, Wojciech J. |
spellingShingle |
Kostowski, Wojciech J. ddc 600 ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Thermoecological cost of electricity production in the natural gas pressure reduction process |
authorStr |
Kostowski, Wojciech J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000529575 |
format |
electronic Article |
dewey-ones |
600 - Technology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Thermoecological cost of electricity production in the natural gas pressure reduction process Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders Elsevier |
topic |
ddc 600 ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders |
topic_unstemmed |
ddc 600 ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders |
topic_browse |
ddc 600 ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Thermoeconomics Elsevier Exergy Elsevier Thermoecological cost Elsevier Natural gas Elsevier Gas expanders |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s u su w s ws p b pb |
hierarchy_parent_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
hierarchy_parent_id |
ELV000529575 |
dewey-tens |
600 - Technology 610 - Medicine & health |
hierarchy_top_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000529575 |
title |
Thermoecological cost of electricity production in the natural gas pressure reduction process |
ctrlnum |
(DE-627)ELV012328391 (ELSEVIER)S0360-5442(14)00053-X |
title_full |
Thermoecological cost of electricity production in the natural gas pressure reduction process |
author_sort |
Kostowski, Wojciech J. |
journal |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
journalStr |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
10 |
author_browse |
Kostowski, Wojciech J. |
container_volume |
76 |
physical |
9 |
class |
600 600 DE-600 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kostowski, Wojciech J. |
doi_str_mv |
10.1016/j.energy.2014.01.045 |
dewey-full |
600 610 |
title_sort |
thermoecological cost of electricity production in the natural gas pressure reduction process |
title_auth |
Thermoecological cost of electricity production in the natural gas pressure reduction process |
abstract |
The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. |
abstractGer |
The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. |
abstract_unstemmed |
The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Thermoecological cost of electricity production in the natural gas pressure reduction process |
url |
https://doi.org/10.1016/j.energy.2014.01.045 |
remote_bool |
true |
author2 |
Usón, Sergio Stanek, Wojciech Bargiel, Paweł |
author2Str |
Usón, Sergio Stanek, Wojciech Bargiel, Paweł |
ppnlink |
ELV000529575 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.energy.2014.01.045 |
up_date |
2024-07-06T22:04:07.826Z |
_version_ |
1803868908109692928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012328391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2014.01.045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000023.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012328391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(14)00053-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostowski, Wojciech J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermoecological cost of electricity production in the natural gas pressure reduction process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoeconomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exergy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoecological cost</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural gas</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas expanders</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usón, Sergio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bargiel, Paweł</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:10-18</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2014.01.045</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">10-18</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
score |
7.401005 |