Dependence of TiO2 nanotube microstructural and electronic properties on water splitting
In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a d...
Ausführliche Beschreibung
Autor*in: |
Freitas, R.G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method - Xiao, Hong ELSEVIER, 2013, the international journal on the science and technology of electrochemical energy systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:251 ; year:2014 ; day:1 ; month:04 ; pages:178-186 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.jpowsour.2013.11.067 |
---|
Katalog-ID: |
ELV012353590 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012353590 | ||
003 | DE-627 | ||
005 | 20230625110725.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2013.11.067 |2 doi | |
028 | 5 | 2 | |a GBVA2014012000006.pica |
035 | |a (DE-627)ELV012353590 | ||
035 | |a (ELSEVIER)S0378-7753(13)01894-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Freitas, R.G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. | ||
520 | |a In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. | ||
650 | 7 | |a Water splitting |2 Elsevier | |
650 | 7 | |a Crystallite size |2 Elsevier | |
650 | 7 | |a Lattice strain |2 Elsevier | |
650 | 7 | |a TiO2 nanotube |2 Elsevier | |
700 | 1 | |a Santanna, M.A. |4 oth | |
700 | 1 | |a Pereira, E.C. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xiao, Hong ELSEVIER |t Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |d 2013 |d the international journal on the science and technology of electrochemical energy systems |g New York, NY [u.a.] |w (DE-627)ELV00098745X |
773 | 1 | 8 | |g volume:251 |g year:2014 |g day:1 |g month:04 |g pages:178-186 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpowsour.2013.11.067 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 251 |j 2014 |b 1 |c 0401 |h 178-186 |g 9 | ||
953 | |2 045F |a 620 |
author_variant |
r f rf |
---|---|
matchkey_str |
freitasrgsantannamapereiraec:2014----:eednefi2aoueirsrcuaadlcrncrp |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
50.92 |
publishDate |
2014 |
allfields |
10.1016/j.jpowsour.2013.11.067 doi GBVA2014012000006.pica (DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Freitas, R.G. verfasserin aut Dependence of TiO2 nanotube microstructural and electronic properties on water splitting 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier Santanna, M.A. oth Pereira, E.C. oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 https://doi.org/10.1016/j.jpowsour.2013.11.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 251 2014 1 0401 178-186 9 045F 620 |
spelling |
10.1016/j.jpowsour.2013.11.067 doi GBVA2014012000006.pica (DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Freitas, R.G. verfasserin aut Dependence of TiO2 nanotube microstructural and electronic properties on water splitting 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier Santanna, M.A. oth Pereira, E.C. oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 https://doi.org/10.1016/j.jpowsour.2013.11.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 251 2014 1 0401 178-186 9 045F 620 |
allfields_unstemmed |
10.1016/j.jpowsour.2013.11.067 doi GBVA2014012000006.pica (DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Freitas, R.G. verfasserin aut Dependence of TiO2 nanotube microstructural and electronic properties on water splitting 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier Santanna, M.A. oth Pereira, E.C. oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 https://doi.org/10.1016/j.jpowsour.2013.11.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 251 2014 1 0401 178-186 9 045F 620 |
allfieldsGer |
10.1016/j.jpowsour.2013.11.067 doi GBVA2014012000006.pica (DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Freitas, R.G. verfasserin aut Dependence of TiO2 nanotube microstructural and electronic properties on water splitting 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier Santanna, M.A. oth Pereira, E.C. oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 https://doi.org/10.1016/j.jpowsour.2013.11.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 251 2014 1 0401 178-186 9 045F 620 |
allfieldsSound |
10.1016/j.jpowsour.2013.11.067 doi GBVA2014012000006.pica (DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Freitas, R.G. verfasserin aut Dependence of TiO2 nanotube microstructural and electronic properties on water splitting 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier Santanna, M.A. oth Pereira, E.C. oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 https://doi.org/10.1016/j.jpowsour.2013.11.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 251 2014 1 0401 178-186 9 045F 620 |
language |
English |
source |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 |
sourceStr |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:251 year:2014 day:1 month:04 pages:178-186 extent:9 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Water splitting Crystallite size Lattice strain TiO2 nanotube |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
authorswithroles_txt_mv |
Freitas, R.G. @@aut@@ Santanna, M.A. @@oth@@ Pereira, E.C. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV00098745X |
dewey-sort |
3620 |
id |
ELV012353590 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012353590</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2013.11.067</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012353590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(13)01894-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freitas, R.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dependence of TiO2 nanotube microstructural and electronic properties on water splitting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water splitting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crystallite size</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice strain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TiO2 nanotube</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santanna, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pereira, E.C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:251</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:178-186</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2013.11.067</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">251</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">178-186</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Freitas, R.G. |
spellingShingle |
Freitas, R.G. ddc 620 ddc 690 bkl 50.92 Elsevier Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
authorStr |
Freitas, R.G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00098745X |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 690 VZ 50.92 bkl Dependence of TiO2 nanotube microstructural and electronic properties on water splitting Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube Elsevier |
topic |
ddc 620 ddc 690 bkl 50.92 Elsevier Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube |
topic_unstemmed |
ddc 620 ddc 690 bkl 50.92 Elsevier Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube |
topic_browse |
ddc 620 ddc 690 bkl 50.92 Elsevier Water splitting Elsevier Crystallite size Elsevier Lattice strain Elsevier TiO2 nanotube |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m s ms e p ep |
hierarchy_parent_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
hierarchy_parent_id |
ELV00098745X |
dewey-tens |
620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00098745X |
title |
Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
ctrlnum |
(DE-627)ELV012353590 (ELSEVIER)S0378-7753(13)01894-6 |
title_full |
Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
author_sort |
Freitas, R.G. |
journal |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
journalStr |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
178 |
author_browse |
Freitas, R.G. |
container_volume |
251 |
physical |
9 |
class |
620 620 DE-600 690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Freitas, R.G. |
doi_str_mv |
10.1016/j.jpowsour.2013.11.067 |
dewey-full |
620 690 |
title_sort |
dependence of tio2 nanotube microstructural and electronic properties on water splitting |
title_auth |
Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
abstract |
In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. |
abstractGer |
In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. |
abstract_unstemmed |
In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Dependence of TiO2 nanotube microstructural and electronic properties on water splitting |
url |
https://doi.org/10.1016/j.jpowsour.2013.11.067 |
remote_bool |
true |
author2 |
Santanna, M.A. Pereira, E.C. |
author2Str |
Santanna, M.A. Pereira, E.C. |
ppnlink |
ELV00098745X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jpowsour.2013.11.067 |
up_date |
2024-07-06T22:08:32.903Z |
_version_ |
1803869186062024704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012353590</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625110725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2013.11.067</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012353590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(13)01894-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freitas, R.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dependence of TiO2 nanotube microstructural and electronic properties on water splitting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, TiO2 nanotubes were prepared by anodization in ionic liquid at 10 °C and 20 °C. Different tube diameters (50.8 nm and 70.5 nm) were obtained, and both of them exhibited an anatase phase with distinct crystallite sizes and lattice strains. The increase in the crystallite size led to a decrease in the grain boundary surface area, which could be associated with the recombination centers of the photogenerated charge carriers. Electrochemical impedance spectroscopy was used to correlate the water splitting photoactivity with the charge transfer resistance and the apparent roughness. A schematic representation of the nanotube structures consisting of two layers, compact and porous, proved to be appropriate to clarify the obtained results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water splitting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crystallite size</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice strain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TiO2 nanotube</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santanna, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pereira, E.C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:251</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:178-186</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2013.11.067</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">251</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">178-186</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.4010096 |